

VS-4718 FAK INHIBITOR

NON-CONFIDENTIAL SUMMARY

DECEMBER 2015

Verastem Company Summary

- Verastem (VSTM) is a publically traded Biotechnology company based in Boston, MA
 - —Founded in 2010 by Robert Weinberg (MIT) & Eric Lander (Broad Institute)
- Focused on development of small molecule anticancer drugs that target the tumor microenvironment for durable response
 - –Cancer Stem Cells (CSCs)
 - -Immune cell modulation
 - Tumor stromal density

VS-4718 Objectives for CRUK Combinations Alliance

- Update on VS-4718 Development path
 - -VS-4718 is an oral small molecule FAK/PYK2 kinase inhibitor
 - Phase 1 dose finding study nearing completion to define RP2D
 - Phase 1 combination study of VS-4718 with gemcitabine/Nab-paclitaxel in 1st line pancreatic cancer in progress
- Explore selected combinations of interest with VS-4718
 - —Immune checkpoint inhibitors
 - Other immuno-oncology agents
 - -Targeted agents of other classes
- Open to additional novel combinations and indications with strong scientific rationale

VS-4718 Scientific Rationale

FAK as an Anti-Cancer Target

- FAK (Focal Adhesion Kinase) is a non-receptor tyrosine kinase activated in response to Integrin and Growth Factor receptor stimulation
- FAK activation triggers signaling pathways essential for tumor cell proliferation, survival, migration, invasion, angiogenesis and resistance to chemo- & radiation therapy
- FAK inhibition blocks both primary tumor growth & metastasis

Brunton VG & Frame MC. *Curr Opin Pharmacol.* 2008;8:427 Schlaepfer DD et al. *Biochim Biophys Acta.* 2004;1692:77

FAK is Highly Expressed in Advanced Stages of Cancer

Tissue	Normal	Benign	Pre-Invasive	Invasive	Metastatic	Reference
Breast		-		+++	++++	Lancet 342:1024, 1993.
	+/-			+++	++++	Cancer Res 55: 2752, 1995.
		+	+++	+++		Clin Cancer Res 6: 2417, 2000.
	+/-			+/+++		J Gastroenterol 8: 613, 2002.
Colon	-	+		++++	+++++	Lancet 342:1024, 1993.
	+	-	+++	+++	+++	Cancer Res 55: 2752,1995.
	+				+++	Ann Surg Oncol 4: 264, 1997.
		+	+++	+++		Clin Cancer Res 6: 2417, 2000.
	+			+++	++	Clin Cancer Res 7: 3106, 2001.
	+/-			++/+++		J Gastroenterol 8: 613, 2002.
Thyroid	+	+		+/+++	++++	Ann Surg Oncol 3: 100, 1996.
Prostate	+/-	+		+	+++	Int J Cancer 68: 164, 1996.
	++	+++	+++	+++	+++	Prostate 53: 124, 2002.
Head-Neck	-/++		+++	+/++++		Head Neck 20: 634, 1998.
Liver	-			+++		Clin Cancer Res 10: 2812, 2004
	+			+++++		Br J Cancer 85: 228, 2001.
	+/-			++/+++		J Gastroenterol 8: 613, 2002.
Stomach	+/-			++/+++		J Gastroenterol 8: 613, 2002.
Ovary	+			++++		Cancer 86: 1551, 1999.
Glioma	-	-	+	-	+++++	Pediatr Neurosurg 33: 49, 2000.
	-		-	+	++	J Cell Sci 113: 421, 2000.
		-	++	++	++	Cancer Res 61: 5688, 2001.
	+			+++		Cancer Res 62: 2699, 2002.

High pFAK Correlates with Poor Prognosis in Ovarian Cancer

 High tumor FAK and pFAK expression correlate with poor survival (Sood et al., J Clin Invest 2010)

VS-4718 is a potent FAK/PYK2 inhibitor

VS-4718 FAK/PYK2 dual kinase inhibitor (orally available)

Biochemical Assay:

In vitro Inhibition of:	IC ₅₀ (nM)
Recombinant Focal Adhesion Kinase ¹	22

¹Z-Lyte Kinase Assay

Cellular Assay:

- Preferentially targets cancer stem cells in vitro & in vivo
- Strong preclinical rationale for an Immuno-oncology role
- Broad, robust anti-tumor efficacy in xenograft, PDX & syngeneic models
- Phase I dose escalation nearing completion to define RP2D
 - Generally well tolerated to date and the expected on-target effects are clinically manageable

VS-4718 Preferentially Targets Cancer Stem Cells (CSCs)

Cancer Stem Cells (CSCs) in the tumor microenvironment

- Tumors are heterogeneous in composition
 - Bulk tumor (may be effectively targeted by chemotherapy)
 - –Cancer stem cells (CSCs)
 - Resistant to chemotherapy and enriched by chemotherapy
 - Mediate cancer recurrence & metastasis
 - Functionally defined by their tumor-initiating capability
 - May be identified by specific markers (e.g. ALDH; CD133; SOX2)
 - -Absence of CSC markers in residual tumor are indicators of good prognosis

- N = 115 patients with confirmed lymph node metastases at diagnosis
- Standard neoadjuvant chemotherapy: AC x 4 followed by weekly PTX x 12
- ALDH1 assessed by IHC
- ** p<0.001

Targeting Cancer Stem Cells for a Durable Clinical Response

VS-4718 combinations are potentially important to target both cancer stem cells & bulk tumor for a more durable clinical response

FAK is critical for Cancer Stem Cell tumor-initiating capability

Shibue et al. Cancer Discovery 2012

FAK is critical for cancer cells undergoing EMT (epithelialmesenchymal transition) to become CSCs capable of generating macrometastases

VS-4718 blocks enrichment of CSCs by standard of care chemotherapy

MDA-MB-231 TNBC cell line:

- Standard of care (SoC) chemotherapy agents enrich CSCs
- Single agent FAK inhibitor decreases the proportion of CSCs
- FAK inhibitor in combination with SoC chemotherapy blocks CSC enrichment

VS-4718 preferentially targets CSCs in vivo

VS-4718 treatment, MDA-MB-231 TNBC model:

*** The Limiting Dilution assay is a gold-standard functional assay for cancer stem cells

VS-4718 extends efficacy after discontinuation of chemotherapy

Immuno-Oncology role for VS-4718

Potential modulation of the immunosuppressive tumor microenvironment by FAK inhibitors

Modulate Tumor Immune Cell Populations

to enhance efficacy of immuno-therapeutics

Reduce Stromal Density

to improve drug & CD8+ T cell penetration To tumor

Reduce Cancer Stem Cells

in addition to bulk tumor for more durable response

FAK knockout-induced bulk tumor regression is dependent on the presence of CD8+ T cells

FAK knockout, SCC 7.1 cell line:

Tumor reduction through FAK knock-out is dependent on the presence of an immunocompetent setting

Specifically, FAK knock-out mediated tumor reduction is dependent on the presence of cytotoxic (CD8+) T cells

Serrels et al. (2015) Cell 163: 160

Treatment with FAK inhibitor replicates tumor regression, and correlates with increase in cytotoxic T cells & reduction in immunosuppressive Tregs

FAK knockout vs. FAK inhibitor treatment, SCC 7.1 cell line:

In both FAK knockout cells and FAK-wt cells treated with FAK inhibitor, reduction in tumor burden is correlated with increase in T cells and reduction in immunosuppressive T-regs

Serrels et al. (2015) *Cell* <u>163</u>: 160

regression is replicated with FAK

inhibitor treatment

VS-4718 treatment reduces immunosuppressive MDSCs, M2 Macrophages & Tregs in tumor microenvironment

VS-4718 treatment, KRas-INK orthotopic pancreatic cancer model**:

^{**} Similar reductions in tumor MDSCs, TAMs & T-regs observed in skin, lung & breast cancer models

Source: D DeNardo, Washington University

VS-4718 reduces stromal density in pancreatic cancer transgenic model

VS-4718, PDAC transgenic model:

FAK inhibitor modulation creates a more favorable tumor immune microenvironment for checkpoint inhibitor efficacy

Treatment with Verastem FAK inhibitor

More favorable tumor microenvironment for enhanced efficacy of Immuno-Oncology therapeutics

VS-4718 added to gemcitabine or gemcitabine + anti-PD-1 alters stroma and boosts CD8+ T cell entry

VS-4718, Kras/p53 pancreatic tumors:

VS-4718 opens potential for anti-PD-(L)1 in pancreatic cancer

KRas/p53 s.c KPC pancreatic cancer mouse model:

Source: D. DeNardo, Wash U

Combination benefit retained in difficult-to-treat KPPC transgenic model

FAK inhibitor treatment, KPPC transgenic pancreatic cancer model:

"Immuno" = anti-PD-1 + anti-CTLA-4 + GEM (25 mg/kg)

Source: D DeNardo, Washington University

The VS-4718 mechanism-of-action creates a favorable tumor microenvironment for increased efficacy of immuno-therapeutics

Modulate Tumor Immune Cell Populations

to enhance efficacy of immuno-therapeutics

Reduce Stromal Density

to improve drug & CD8+ T cell penetration To tumor

Reduce Cancer Stem Cells

in addition to bulk tumor for more durable response

VS-4718 Clinical Development

VS-4718-101 Phase 1 Dose Finding and Safety Study in Solid Tumors

- VS-4718-101 (NCT01849744) dose finding to define RP2D
- Dose Proportional PK during the dose escalation
 - Exposures are sufficient for sustained target coverage (>target EC₅₀)
- Safety & PD
 - Generally well tolerated to date and the expected on-target effects are clinically manageable
- Additional data can be shared under confidentiality

Combination with Gemcitabine/Nab-paclitaxel in pancreatic cancer

VS-4718-103 Primary Objectives

- To determine the recommended Phase 2 dose (RP2D) of VS-4718 in combination with nab-paclitaxel and gemcitabine in subjects with advanced cancer and subjects with untreated advanced pancreatic cancer
- To assess the safety and tolerability of VS-4718 in combination with nabpaclitaxel and gemcitabine in subjects with advanced cancer and subjects with untreated advanced pancreatic cancer

Status

- -Study initiated in September, 2015
- Dose escalation Cohort 1 underway

VS-4718 Objectives for CRUK Combinations Alliance

- Update on VS-4718 Development path
 - -VS-4718 is an oral small molecule FAK/PYK2 kinase inhibitor
 - Phase 1 dose finding study nearing completion to define RP2D
 - Phase 1 combination study of VS-4718 with gemcitabine/Nab-paclitaxel in 1st line pancreatic cancer in progress
- Explore selected combinations of interest with VS-4718
 - —Immune checkpoint inhibitors
 - Other immuno-oncology agents
 - Targeted agents of other classes
- Open to additional novel combinations and indications with strong scientific rationale

Verastem Team

Executive Management

Robert Forrester

President/CEO, BOD
CEO/CFO, CombinatoRx/COLY
MeesPierson, Barclays, UBS

Christoph Westphal, M.D., Ph.D.

Executive Chairman of BOD, Cofounder Cofounder/CEO: MNTA, ALNY, XLRN, SIRT, VSTM Cofounder: Alnara (now Lilly), OvaScience (OVAS)

Jack Green

Chief Financial Officer
CFO, Genzyme Transgenics Corporation (GTC)

Lou Vaickus, M.D., FACP

VP, Head of Clinical Development Vertex Tolerx, Sunovion, EMD Serono

Jonathan Pachter, Ph.D.

VP, Head of Research Head of Cancer Biology, OSI (now Astellas) Schering-Plough (now Merck)

Daniel Paterson

Chief Operating Officer CEO: The DNA Repair Co. (now On-Q-ity) PharMetrics (now IMS), Axion

Board of Directors

Timothy Barberich

Former CEO/Chair Sepracor (SEPR)

Paul Friedman, M.D.

Former President/CEO Incyte (INCY)

Michael Kauffman, M.D., Ph.D.

CEO Karyopharm (KPTI), former CMO Onyx

Henri Termeer

Lead Director
Former CEO/Chair Genzyme

Alison Lawton

Former Genzyme (now Sanofi)

Louise Phanstiel

BOD: Cedars Sinai, MYGN

Stephen Sherwin, M.D.

BOD: BIIB; NBIX, RIGL

Scientific Advisory Board

Robert Weinberg, Ph.D.

Whitehead Institute/MIT
Co-founder & Chairman of SAB

Peter Elliott, Ph.D.

Former SVP/Head – R & D, SIRT (now GSK) Millennium (co-developed Velcade®)

Eric Lander, Ph.D.

Broad Institute/MIT/HMS
Pioneer of Human Genome Project

Richard Sackler, M.D.

Chairman – Purdue Pharma

Phil Sharp, Ph.D.

MIT – 1993 Nobel Prize in Medicine Cofounder: Biogen, Alnylam; Sirtris SAB

Chris Walsh, Ph.D.

Harvard Medical School Cofounder: Genzyme, Vicuron; Sirtris SAB

Joseph (Yossi) Schlessinger, Ph.D.

Yale Medical School

Cofounder: Sugen (Pfizer), Plexxikon (Daiichi-Sankyo)

Translational Research

José Baselga, M.D., Ph.D.

Physician in Chief; MSKCC Senior Medical Advisor

George Daley, M.D., Ph.D.

Director – Stem Cell Program Harvard Medical School/HHMI Max Wicha, M.D.

Director – University of Michigan Comprehensive Cancer Center

Eric Winer, M.D.

Director – Breast Oncology Center Dana Farber Cancer Institute/HMS

Published information on VS-4718 as a CSC agent

• Publications:

- Shapiro et al. (2014) Merlin deficiency predicts for FAK inhibitor sensitivity: A synthetic lethal relationship. SCIENCE TRANSLATIONAL MEDICINE 6: 237ra68.
- Meads et al. (2015) Targeting PYK2 Mediate Microenvironment-Specific Myeloma Cell Death. ONCOGENE
- Zhang et al. (2015) Proline-rich Tyrosine Kinase (Pyk2) Promotes Tumor Progression in Multiple Myeloma. BLOOD <u>124</u>: 2675.

AACR, San Antonio Breast Cancer Symposium, EORTC presentations

- Weaver et al. Minisymposium at AACR 2015; Targeting Cancer Stem Cells to Impede Tumor Progression
- Kolev et al. FAK and PI3K/mTOR inhibitors target cancer stem cells: Implications for SCLC treatment strategies, AACR 2015
- Kolev et al. FAK inhibitors VS-6063 and VS-4718 target cancer stem cells: Implications for TNBC sequential and combination therapies, SABCS 2014
- Kolev et al. Pharmacological and Genetic Inhibition of FAK Attenuates Cancer Stem Cell Function In Vitro and In Vivo , AACR 2013
- Xu et al. The FAK Inhibitors VS-4718 and VS-5095 Attenuate Breast Cancer Stem Cell Function in vitro and Tumor Growth in vivo, AACR 2012

Published information on VS-4718 in Immuno-Oncology

• CELL journal publication:

—Serrels et al. (2015) Nuclear FAK Controls Chemokine Transcription, Tregs, and Evasion of Anti-Tumor Immunity. CELL 163: 160.

• EORTC/AACR/NCI and SITC meetings November, 2015:

- -Jiang et al. (2015) Targeting Focal Adhesion Kinase Reprograms the Pancreatic Tumor Microenvironment and Renders Pancreas Cancer Responsive to Checkpoint Immunotherapy
- Ring et al. (2015) FAK/PYK2 Inhibitor VS-4718 Enhances Immune
 Checkpoint Inhibitor Efficacy

