

Partnership

Increased partnership working between NHS organisations across Wales

Recognition of effective working partnership

 Shortlisted in the Clinical Research Nursing Category, Nursing Times Award 2018

 Many of the Research Nurses working in Cardiff facilities funded by ECMC

ECMC Network Activity

- Initiated and led ECMC Haematology Network Group (involves most ECMC centres and two non-ECMC centres)
- **JING** (Annual Meeting Cardiff Jan 19)
- Increased interactions with ECMC Paediatric Network
- **ECMC Network PPI group** (Deputy Chair, Cardiff)
- **Research Nurses Network Group** (Member, Cardiff)

- Developing a drug/RT clinical trial portfolio.
- Working in partnership with other centres, including Liverpool and ECMC network members; Glasgow, Oxford around the UK. Developing translational studies together with ECMC centres and

industry.

MOCLE **Key Trial:** Chief Investigator: Dr Steven Knapper, Cardiff University and Cardiff & Vale UHB. A Phase 2 Trial of the monocyte-targeted histone deacetylase inhibitor tefinostat (CHR-2845) in chronic myelomonocytic leukaemia (CMML) Background Pre-clinical in vitro studies characterising properties of Tefinostat in monocytoid AML funded by ECMC. hCE-1 cleavage Tefinostat (ester) Β Neutral, Φ-targeted esters Molecular target Non-macrophages hCE-1 negative cells No acid production, low intracellular concentration. weak, short-lived cellular effect Fig 1. A) Structures of Tefinostat and CHR-2847. B) Schematic representation of 'esterase sensitive motif' mechanism of drug activation. Trial managed by the Centre for Trials Research, Cardiff University. Sponsor was Cardiff University. Patients were enrolled at 9 trial centres, 6 of which were members of the ECMC network. **Trial Design** Single arm phase 2 trial conducted to a Bryant and Day 2-stage design with dual-primary-endpoints of safety and clinical efficacy.

Results (Stage 1)

20 patients received 'Tefinostat treatment'.

Table 1. Summarised clinical outcomes.

Outcome	No. (% of eval
BM response (partial)	1
Stable disease	9
Progressive disease	3
(Non evaluable)	7

Table 2. Details of clinical responses

Age Sex	FAB	Genetics	Response
71M	Proliferative (WBC 34.3)	ASXL1 NRAS SETBP1 SRSF2	Partial bone marrow response
75M	Proliferative (WBC 19.9)	ASXL1 IDH2 NRAS SRSF2	Clinical Benefit*

Summary/Conclusions

- Trial endpoint for safety was satisfied; Tefinostat was generally well tolerated.
- number of clinical responses to Tefinostat.
- Patient recruitment was not continued into stage 2 of this phase 2 study.

CARDIFF

Description of response

- CMML-2 with 14% marrow blasts at baseline; red cell transfusion dependency. After 6 cycles, <5% BM blasts, with persisting marrow hypercellularity and peripheral leucocytosis/ low level monocytosis. Achieved red cell transfusion independence from cycle 1 - 14. Received 15 cycles of Tefinostat prior to disease progression.
- CMML-1 with 2% blasts, fibrotic marrow (gd 2-3 reticulin); red cell transfusion dependency. Reduction in MPN/SAF total symptom score from 112 to 31 after 3 cycles of Tefinostat (*not sustained to end of cycle 6). Reduction in WBC from 35.9 to 7.6x10⁹/l and monocyte count from 7.6 to 2.0x10⁹/l. No impact on bone marrow appearances or transfusion dependency. Stopped Tefinostat treatment after 6 cycles.

Trial endpoint for clinical efficacy did not achieve the pre-defined minimum

Presented at American Society of Haematology, San Diego, December 2018.

Key Trial:

Chief Investigators: Dr Rob Jones, Cardiff University and Velindre Cancer Centre, Cardiff and Dr Sacha Howell, The University of Manchester and The Christie NHS Foundation Trust

Results of a Phase 1b/2 randomised placebo-controlled trial of Capivasertib (AZD5363) plus fulvestrant versus placebo plus fulvestrant after relapse or progression on an aromatase inhibitor in metatastic ERpositive breast cancer (FAKTION).

Background

- PI3K and AKT cell signalling network deregulated in cancer.
- AKT activation mediates resistance to treatment.
- Capivasertib is a pan-AKT kinase inhibitor.

Fig 1. Modulation of cell proliferation, cell survival and metabolism.

- Trial managed by the Centre for Trials Research, Cardiff University.
- Sponsor was Velindre Cancer Centre, Cardiff.

Research questions

- Does the addition of capivasertib to fulvestrant increase the progression free survival in women with ER+ve advanced or metastatic breast cancer?
- Is capivasertib safe, tolerable, and feasible to deliver when combined with fulvestrant?
- What is the efficacy of capivasertib plus fulvestrant in sub-populations of patients with or without activation of the tumour PI3K/Akt/PTEN pathway?
- What is the impact of capivasertib on the pharmacokinetics of fulvestrant?

Results

• Phase I study confirmed starting dose of capivasertib of 400mg.

This data will be presented as an Oral presentation: at the American Society of Clinical Oncology, Chicago on 4th June, 2019.

Contact Us:

Centre Manager: Jo Baker 🖂 CardiffECMC@Cardiff.ac.uk 1 https://www.ecmcnetwork.org.uk/cardiff