Adaptive trial design for early phase trials Model based dose-finding

Dr Thomas Jaki Dr Lisa Hampson

Lancaster University

Dose schedule: $d_1 < \cdots < d_k$

Response:
$$x = \begin{cases} 1 \text{ for toxic response} \\ 0 \text{ otherwise} \end{cases}$$

Structure: treat successive cohorts of *c* subjects

Objective: find the "highest safe dose"

Phase I cancer trials

• Typically implemented as adaptive designs:

Doses	1	2.5	5	10	15	20	25
# patients	3	3	3				
# DLT	0	0	1				

- What next?
 - More patients on same dose (5)
 - More patients on lower dose (2.5)?
 - Patients on higher dose (10)?
- \Rightarrow Rule such that most patients on MTD, few overexposed

Standard Phase I cancer designs

- "3+3" designs
 - standard, simple up-and-down design
 - no statistical inference, simple data-based rules
 - very popular among clinicians
 - bad statistical properties ("operating characteristics")
- Continual Reassessment Method (CRM)
 - very popular among statisticians
 - good operating characteristics
 - bad on-study properties (non-intuitive dose recommendations)
- Bayesian adaptive dose-response escalation strategies
 - model based using flexible dose-response model
 - Usually very balanced dose-recommendations

Review of advantages Jaki et al. (2013)

MTD – maximal dose acceptably tolerated by a particular patient population

 \rightarrow vague

 $TD100\pi$ – dose at which the probability of toxicity is π (for $0 < \pi < 1$), e.g. TD20 \rightarrow more specific

Assume that a 20% risk of toxicity is an acceptable risk to pay for a chance of benefit

- Make assumptions about the form of p(d)
- 2 Impose a prior distribution for the parameters that determine p(d)
- Ohoose next dose to optimise treatment for this patient
- Stop once target dose level can be estimated accurately enough

Two possible purposes:

- To include relevant additional information
 - Related trial data
 - Expert opinion
- Participation of the second second
 - Typically pessimistic reflecting fears rather than beliefs
 - Often useful to use frequentist final analysis

Doses

Want most patients treated at doses with dark arrows

- Useful to have many doses available
- Skipping doses should be considered

Continual Reassessment method (CRM) O'Quigley et al (1990)

Dose schedule: $d_1 < \cdots < d_k$

Response:
$$x = \begin{cases} 1 \text{ for toxic response} \\ 0 \text{ otherwise} \end{cases}$$

Objective: find $TD\vartheta$

Cohort size: 1

One parameter log-log model

$$p(d_i) = \pi_i^{\theta}, \ i = 1, \dots, k$$

where π_i is the fixed prior guess at the probability of toxicity at d_i , such that

 $\pi_1 < \pi_2 < \cdots < \pi_k$

A Bayesian prior for θ is imposed: $\theta \sim Exp(1)$ so that $E_0(\theta) = 1$

Representation of the model

Starting values for the π_i

Dose level

Assign starting values for the π_i

π_1	π_2	π_3	π_4	π_5	π_6
0.05	0.10	0.20	0.30	0.50	0.70

Thus first subject receives d_3

Simulated data

Criticisms and modifications

Criticisms:

- Starting dose is usually high
- Treats too many subjects on high doses
- Doses can be skipped
- No appropriate stopping rule

Modifications:

- Start from the lowest dose
- Safety constraints
- No dose skipping
- Formal stopping rules

Bayesian Logistic Regression Model (BLRM) Neuenschwander et al. (2008)

2-parameter logistic regression model

Dose level

- Specify two quantiles for probability of toxicity at each dose level
- Define prior distribution for the model parameters such that they are in close agreement with the above
- Requires Markov Chain Monte Carlo (MCMC)

Dose escalation and stopping

Choose recommended dose, d, such that

- probability of overdosing $P(\mathsf{DLT} \text{ rate} > 0.33 \mid d) < 0.2$
- probability of target toxicity $P(\mathsf{DLT} \text{ rate } \in (0.16, 0.33) \mid d) \ge 0.5$
- probability of underdosing $P(\mathsf{DLT} \text{ rate } < 0.16 \mid d) < 0.3$

is controlled.

- Widely used in industry now
- Specifying priors can be time consuming
- Requires MCMC
- Very intuitive dose-selection

- Open-label, multicenter, dose-escalation cancer trial
- Find dose that has 30% risk of toxicity, the TD30.
- Use CRM but do not allow for skipping dose levels
- After 4 cohorts (4 dose levels) no DLTs
- Team decides to skip 2 dose levels
- Two DLTs in two patients

	Dose in mg									
	1	2.5	5	10	15	20	25	30	40	50
No. of patients	3	4	5	4	_	_	2	-	-	-
No. of DLTs	0	0	0	0	-	-	2	-	-	-
Posterior summaries:										
Mean	0.069	0.085	0.099	0.111	0.123	0.144	0.163	0.242	0.330	0.465
Std. dev.	0.055	0.062	0.068	0.072	0.076	0.082	0.087	0.101	0.109	0.108

Dose recommendation for next cohort:

- 3+3: Unclear
- CRM: 40mg
- BLRM: 15mg (from previous figure)

2-parameter logistic regression model

Dose level

- Specify two dose levels (low and high)
- Elicit probability of toxicity at these levels from experts
- Determine how many patients this information is worth
- Adjust to start escalation at lowest dose
- Include "pseudo-patients" in analysis based on above

Note: This corresponds to using a beta-prior on p(d).

- Treat pseudo-patients as real patients
- Find parameter estimates for logistic model
- Any software that can fit logistic models can be used

Next dose:

- current estimated target toxicity level
- Usually subject to some additional safety rule
- Stop
 - When maximum number of patients has been recruited
 - When the ratio of credibility interval limits is small enough

- Easy to elicit priors from experts
- Any software that can fit a logistic model can be used
- Useful to allow higher $TD\vartheta^*$ during trial when seeking $TD\vartheta$
- Not possible to use more complex rules for dose selection without MCMC

- 3+3 design as discussed in Lecture 1
- Simple BLRM
 - Cohort size 1
 - Operational prior worth 6 patients
 - Accuracy stop if ratio of CI < 4
- True probability of toxicity at each dose level

π_1	π_2	π_3	π_4	π_5	π_6
0.05	0.10	0.20	0.30	0.50	0.70

A comparison

