## Why do we inflict research biopsies on our patients?

ECMC Annual Meeting – 18 May 2016

Dr. Richard Baird - University of Cambridge







### Why do we inflict research biopsies on our patients? Talk Outline

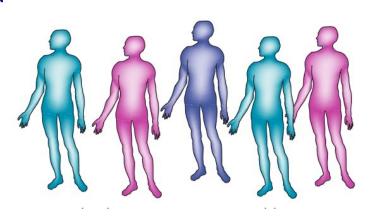
- Why do we inflict research biopsies on our patients?
- Contemporary drug development
- Risks of research biopsies to patients
- Research biopsies how can we improve?
- For the future ...





### Why do we inflict research biopsies on our patients? 2 main reasons:

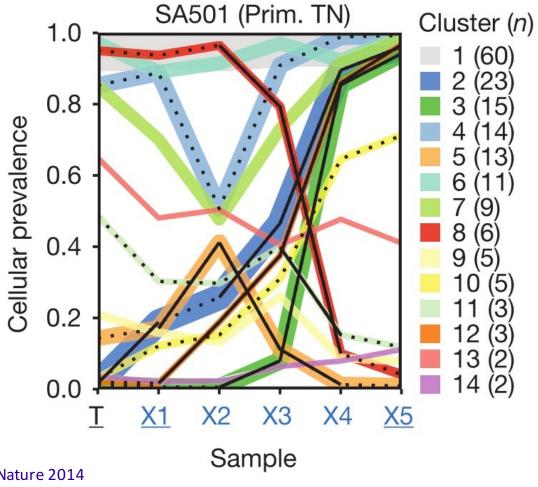
- 1. Individual patients respond differently to the same treatment
- A cancer within an individual patient can change over time,
   and may therefore require a change in treatment


Precision / personalised medicine approaches aim to match the (current) molecular profile of an individual patient's cancer to the best possible targeted therapy





# Personalised / precision medicine: Patients respond differently to the same treatment


- No two cancer patients are identical
- Two cancer patients with the same tumour type and stage may have completely different responses to the same (drug) treatment
- These differences in clinical outcomes can in some situations be explained by differences in the molecular profiles of their tumours
- Examples in standard practice:
  - Breast cancer: ER / HER2
  - Lung cancer: EGFR mutation / ALK translocation
- One of the key aims of research biopsies today is to develop the predictive biomarkers of tomorrow

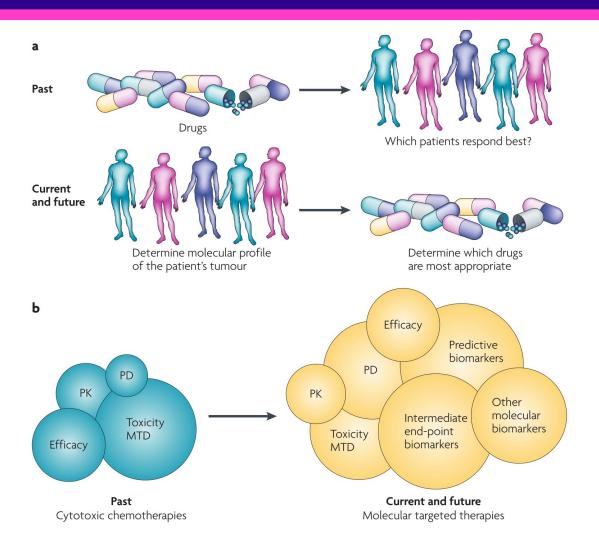






#### Personalised / precision medicine: **Cancers change over time**



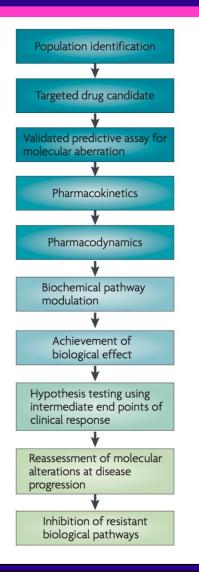

- Triple negative breast cancer
- Different colours represent different subclones of cancer cells within the tumour
- Looks like tumours can be complex mixes of cell populations which compete with each other
  - > natural selection
  - > clonal evolution

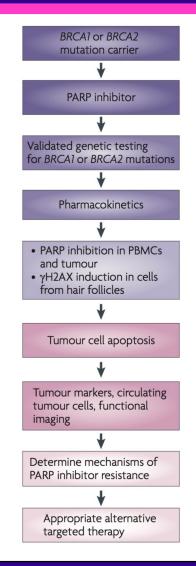






#### Personalised / precision medicine: Trends in contemporary drug development





Yap Nature Reviews Cancer 2010





#### Personalised / precision medicine: Contemporary drug development – "pharmacologic audit trail"



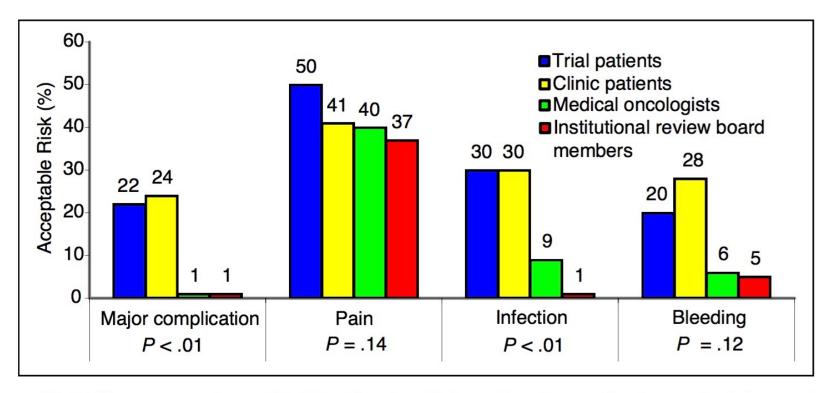


- To really understand why a drug works in one patient and not another
- We need to understand a sequence of scientific questions
- So-called "Pharmacologic audit trail"

Yap Nature Reviews Cancer 2010






#### Personalised / precision medicine: Contemporary drug development – what can be achieved

| Phase             | Drug                     | Target                        | Disease                                       | ORR        | References                                |
|-------------------|--------------------------|-------------------------------|-----------------------------------------------|------------|-------------------------------------------|
| 2                 | Trastuzumab              | HER2                          | Breast cancer                                 | 12%        | Baselga JCO 1996                          |
| 1                 | Imatinib                 | BCR-ABL<br>C-KIT              | CML<br>GIST                                   | 54%<br>54% | Druker NEJM 2001<br>Demetri NEJM 2002     |
| 1                 | Olaparib                 | PARP                          | BRCA mutant cancers (breast, ovary, prostate) | 47%        | Fong NEJM 2009                            |
| 1                 | Vismodegib               | SMO, PTCH1 Hedgehog mutations | Advanced basal cell carcinoma                 | 55%        | Von Hoff NEJM 2009                        |
| 1-2               | Ruxolitinib              | JAK2                          | Myelofibrosis                                 | 52%        | Verstovsek NEJM 2010                      |
| 1                 | Vemurafenib              | BRAF V600E mutant             | Melanoma                                      | 81%        | Flaherty NEJM 2010                        |
| 1                 | Crizotinib               | ALK<br>translocations         | NSCLC                                         | 57%        | Kwak NEJM 2010                            |
| 1                 | CAL-101/<br>GS1101       | PI3K δ-isoform                | NHL/MCL<br>CLL                                | 62%<br>56% | Kahl ASH 2011<br>Brown ASCO 2013          |
| Post-<br>approval | Gefitinib /<br>Erlotinib | EGFR mutant                   | NSCLC                                         | 66%<br>82% | Inoue JCO 2009<br>Zhou Lancet Oncol. 2011 |





#### Risks of research biopsies - to patients: What level of risk is acceptable (to patients & their doctors)



**Fig 1.** The percentage of trial patients, clinic patients, medical oncologists, and institutional review board members who would accept a 5% to 10% risk of a major complication, pain, infection, or bleeding associated with the research-related biopsy.

Agulnick .. Siu JCO 2006

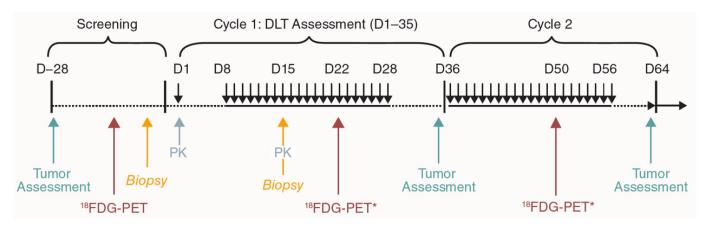




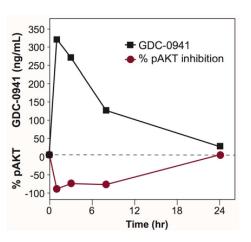
### Risks of research biopsies - to patients: What level of risk actually occurs?

|                                                         | No. of<br>Biopsies | % Total<br>Biopsies | Major<br>Complications<br>[CTCAE<br>grade 3] |       | Minor<br>Complications<br>[CTCAE<br>grade 1 or 2] |      |
|---------------------------------------------------------|--------------------|---------------------|----------------------------------------------|-------|---------------------------------------------------|------|
| Location                                                | (N = 745)          | Performed           | No.                                          | %     | No.                                               | %    |
| Chest-intrathoracic                                     | 211                | 28.3                | 5                                            | 2.4   | 31                                                | 14.7 |
| Pulmonary                                               | 177                |                     |                                              |       |                                                   |      |
| Mediastinal/hilar                                       | 13                 |                     |                                              |       |                                                   |      |
| Pleural                                                 | 20                 |                     |                                              |       |                                                   |      |
| Pericardial                                             | 1                  |                     |                                              |       |                                                   |      |
| Abdomen/pelvis-solid<br>organ                           | 189                | 25.4                | 1                                            | 0.53  | 2                                                 | 1.1  |
| Liver                                                   | 151                |                     |                                              |       |                                                   |      |
| Adrenal                                                 | 34                 |                     |                                              |       |                                                   |      |
| Kidney                                                  | 2                  |                     |                                              |       |                                                   |      |
| Spleen                                                  | 1                  |                     |                                              |       |                                                   |      |
| Uterus                                                  | 1                  |                     |                                              |       |                                                   |      |
| Nonsolid organ                                          | 345                | 46.3                | 0                                            |       | 0                                                 |      |
| Head and neck*                                          | 88                 | 11.8                |                                              |       |                                                   |      |
| Chest-extrathoracic†                                    | 110                | 14.8                |                                              |       |                                                   |      |
| Extremities‡                                            | 11                 | 1.6                 |                                              |       |                                                   |      |
| Abdomen/pelvis-<br>intraperitoneal§                     | 34                 | 4.6                 |                                              |       |                                                   |      |
| Abdomen/pelvis-<br>retroperitoneal  <br>Abdomen/pelvis- | 27                 | 3.6                 |                                              |       |                                                   |      |
| extraperitoneal                                         | 75                 | 10.1                |                                              | Overm | an JCO 2                                          | 2010 |

- MD Anderson series (745 biopsies)
- Overall complication rate 5.2%
- Major complication rate 0.8%
- Overall complication rate by site:
  - Intrathoracic 17.1%
  - Abdominal / pelvis solid organ 1.6%
- Similar results from other institutions


Dana-Farber Boston [Vas-Luis Br.Can.Res.Treat 2013]
Royal Marsden London [Sarker NCRI 2009]






## Personalised / precision medicine: Contemporary drug development –trials can be intense

- Example of contemporary, biomarker intensive phase 1 study
- GDC-0941 pan-Pl3kinase inhibitor (Genentech) (Baird, de Bono et al. ASCO 2010 #2613)
- Timeline for assessments during the first 2 cycles:



 Pharmacodynamic studies provided proof of target inhibition and elaboration of PK-PD relationships







## Personalised / precision medicine: Biomarker studies in phase 1 trials - criticisms

- Most attempts to identify predictive biomarkers in phase 1 "nothing more than expensive fishing expeditions"
  - drug response is multifactorial (may not just depend on target inhibition)
- Our assumptions about the true drug mechanism of action may be wrong
  - eg. multi-kinase inhibitor sorafenib (originally developed as a RAF inhibitor, later shown to exert antitumour activity through VEGF inhibition)
- Performing extra research tumour biopsies poses an significant increased risk and may be unethical
- Incorrectly applied biomarker studies run the risks of:
  - exposing patients to ineffective drugs
  - discarding useful drugs

Ratain CCR 2007 13(22):6545-6548





#### Personalised / precision medicine: The value of biomarker studies in phase 1 trials

- Understanding the true mechanisms for drug sensitivity and resistance in the clinic is needed as soon as possible for any drug this requires biomarker studies
- There is little evidence that extra research tumour biopsies in phase 1 studies pose an excessive risk<sup>1,2</sup>; tumour biopsies for PD studies are often restricted to:
  - patients with easily accessible tumours, likely to be safe
  - dose levels likely to be biologically active (eg. at predefined PK levels, after PD effects seen in surrogate tissues)
- Increasing number of examples where well-designed phase 1 biomarker studies have made a significant contribution to successful drug development
  - HER2 trastuzumab / other HER2-directed therapies
  - BRCA mutations olaparib / other PARP inhibitors
  - ALK translocations crizotinib / other ALK inhibitors

<sup>1</sup>Dowlati CCR 2001 (7) 2971-6 <sup>2</sup>Sarker NCRI 2009 Abstract C143





# Risks of research biopsies - to patients The importance of fully informed consent



"You might feel a little prick."





# Risks of research biopsies - to patients The importance of fully informed consent

#### Does the patient information sheet include:

- Statement regarding the research nature of biopsy?
- Statement regarding the lack of personal benefit from biopsy?
- A description of the scientific rational for research biopsies?
- Mention that image-guidance will be used?
- A description of the level of risk for different biopsy sites
- (Overman JCO 2013: 57 research studies)

| Overman JCO 2010                                           |     |       | Optional<br>Research |                   | Biopsy Studies |                       |     |                        |
|------------------------------------------------------------|-----|-------|----------------------|-------------------|----------------|-----------------------|-----|------------------------|
|                                                            |     | Total |                      | Biopsy<br>Studies |                | Integral<br>Biomarker |     | Correlative<br>Science |
| Characteristic                                             | No. | %     | No.                  | %                 | No.            | %                     | No. | %                      |
| Statement regarding research nature of                     |     |       |                      |                   |                |                       |     |                        |
| Study                                                      | 57  | 100   | 19                   | 100               | 18             | 100                   | 20  | 100                    |
| Biopsy                                                     | 12  | (21)  | ) 1                  | 5                 | 3              | 17                    | 8   | 40                     |
| Optional procedures*                                       | 52  | 91    | 18                   | 95                | 16             | 89                    | 18  | 90                     |
| Statement regarding lack of<br>benefit from                |     |       |                      |                   |                |                       |     |                        |
| Study                                                      | 57  | 100   | 19                   | 100               | 18             | 100                   | 20  | 100                    |
| Biopsy                                                     | 0   |       | 0                    |                   | 0              |                       | 0   |                        |
| Optional procedures*                                       | 32  | 56    | 14                   | 74                | 10             | 56                    | 8   | 40                     |
| Statement regarding alternatives to undergoing             |     |       |                      |                   |                |                       |     |                        |
| Study                                                      | 57  | 100   | 19                   | 100               | 18             | 100                   | 20  | 100                    |
| Biopsy                                                     | 0   |       | 0                    |                   | 0              |                       | 0   |                        |
| Optional procedures*                                       | 50  | 88    | 19                   | 100               | 16             | 89                    | 15  | 75                     |
| Scientific rationale for biopsy provided                   | 48  | 84    | 17                   | 89                | 17             | 94                    | 14  | 70                     |
| Statement describing the use of a needle to obtain biopsy† | 38  | 67    | 14                   | 74                | 9              | 50                    | 15  | 75                     |
| Use of image guidance                                      |     |       |                      |                   |                |                       |     |                        |

Table 3. Inclusion of Research Biopsies in Study Informed Consents





mentioned
Statement regarding safety
or accessibility of biopsy

Mandatory Research

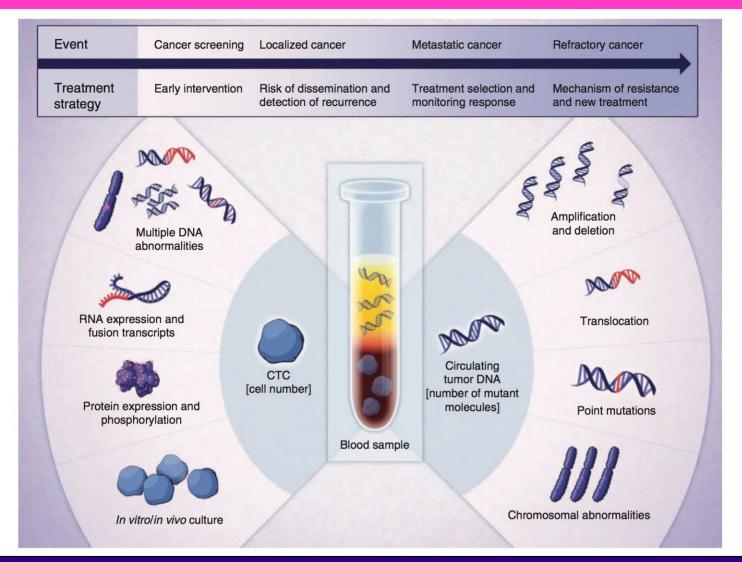
### Why do we inflict research biopsies on our patients? 2 main reasons:

- 1. Individual patients respond differently to the same treatment
- A cancer within an individual patient can change over time,
   and may therefore require a change in treatment

Robust studies correlating cancer molecular profiles with response to different treatments are crucial to improve clinical outcomes for patients with cancer – research biopsies will continue to be important for this ... but we can improve ...






#### Research biopsies – how can we improve?

- 1. Ensure strong scientific rationale (including statistical plan)
- 2. Ensure fully informed patient consent
- 3. Minimise risk on the day of biopsy
  - image-guidance, skill of operator, pressure / observation afterwards
- 4. Clinical governance around biopsies monitor adverse events
- 5. Ensure quality of tissue acquisition, processing and storage
- 6. Ensure that we complete and report biomarker data on research biopsies
- 7. And finally ... develop less-invasive methods for biomarker research
  - liquid biopsies (circulating tumour DNA), imaging etc..





#### Research biopsies – is the future liquid?







#### Thank you – any questions?



