

BIOTHERA the immune health company

Imprime PGG – A novel Innate Immune Modulator

Update to Cancer Research UK November 2014

Clinical Development Update and Outlook

- Immunotherapy in the Treatment of Cancer
 - Approaches and Status Update
- Imprime PGG
 - Technology Overview and Potential
 - Recent Clinical Results in NSCLC
 - Recent Clinical Results in CLL
- Potential Areas of Scientific Interest

Immunotherapy and Cancer Medicine in 2014

Cancer remains an unbeaten disease

- 2.5 million new cases annually, resulting in over 1 million deaths in EU alone
- 1 in 3 cancer patients today will not survive more than 5 years
- finding a cure remains elusive for most cancers
- **key problem** is that the body does not recognize cancer as bad

Immunological approaches to fight cancer hold great potential

- most promising therapy approach in oncology to date
- expected to become a cornerstone of cancer therapy

Local 1	herapy	Systemic		c Therapy	
Surgery	Radiation therapy	Cancer-directed therapy		Immuno- therapy	Supportive therapy
		Chemo- therapy	Hormone therapy	Innate	e.g. bone, blood
		Biological therapy	Combi- nations	Adaptive	
					BIOTHERA

Activating the Immune System to Fight Cancer

Innate

- 1st line of defense
- Non-specific
- Rapid response
- No memory

Components:

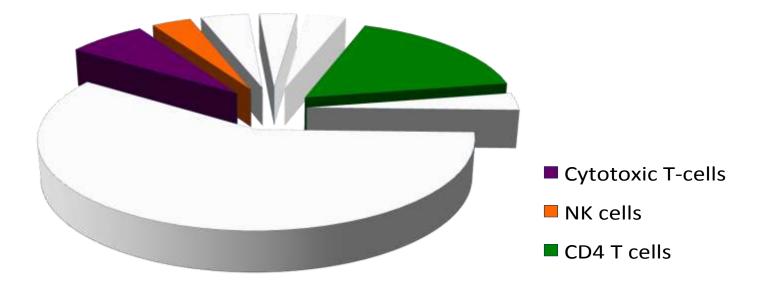
- Complement
- White blood cells: Macrophages Neutrophils Natural Killer cells

- Slower response
- Specific
- Memory

Components:

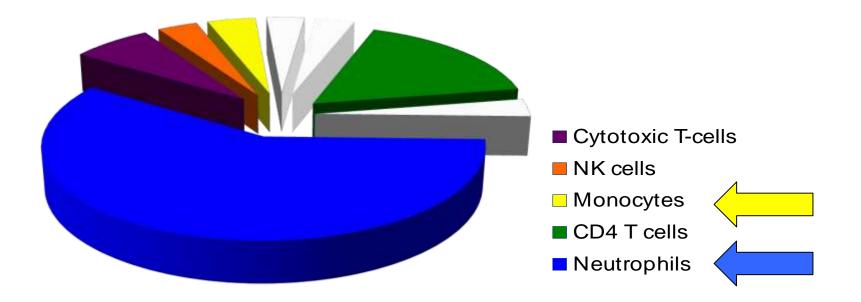
- Antibodies
- B cells Helper T cells Killer T cells Dendritic cells

Adaptive

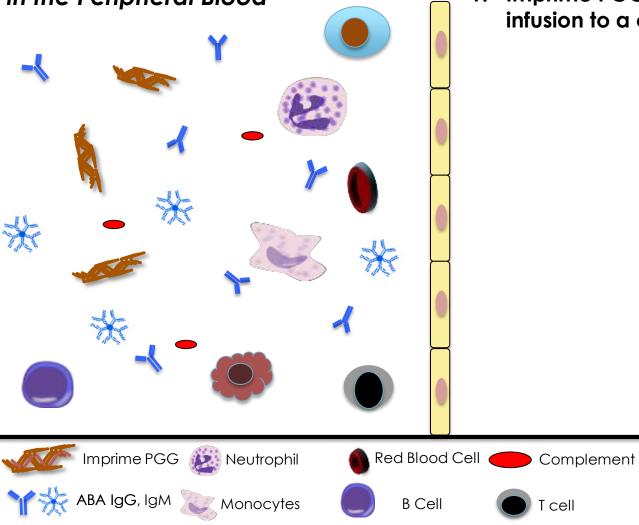

Key considerations when targeting the innate immune system in cancer

- Need to activate complement in or around the cancer, introducing specificity of immune response against cancer
- Need sufficient neutrophils, monocytes/ macrophages
- Need continued dosing

cancer-targeted antibody


Innate Immune Cell Activation

Existing anti-cancer immunotherapy drugs target at most ~30% of the body's immune cells, focusing primarily on cells of the adaptive immune system (T-cells)



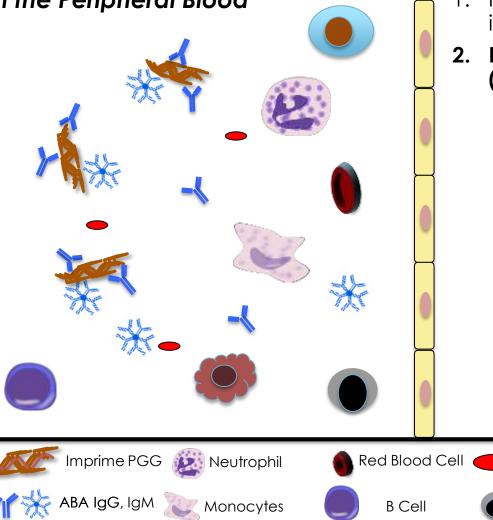
Existing anti-cancer immunotherapy drugs target at most ~30% of the body's immune cells, focusing primarily on cells of the adaptive immune system (T-cells)

Imprime PGG targets innate immune effector cells, neutrophils and monocytes, that represent ~65% of the body's 26 trillion immune cells

Upstream Initiator Mechanisms in the Peripheral Blood

1. Imprime PGG is administered via IV infusion to a cancer patient.

MDSC


BIOTHERA

the immune health company

NK Cell

Reference list provided at the end of the presentation.

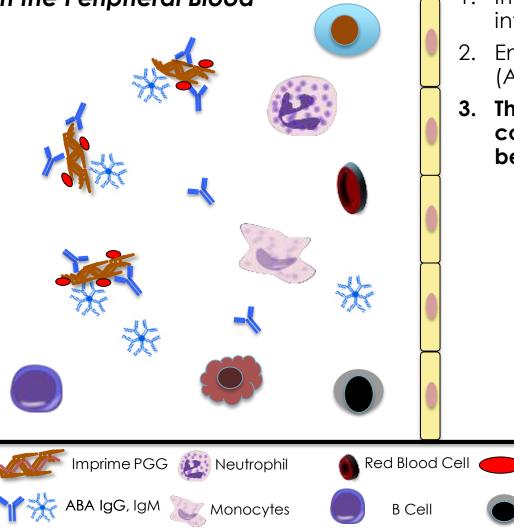
Upstream Initiator Mechanisms in the Peripheral Blood

- 1. Imprime PGG is administered via IV infusion to a cancer patient.
- Endogenous anti-β-glucan antibodies (ABA) bind to Imprime PGG.¹⁷

MDSC

BIOTHERA

the immune health company


NK Cell

Reference list provided at the end of the presentation.

Complement

T cell

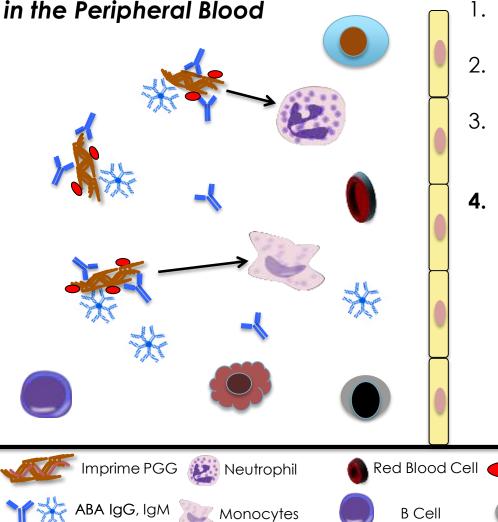
Upstream Initiator Mechanisms in the Peripheral Blood

- 1. Imprime PGG is administered via IV infusion to a cancer patient.
- Endogenous anti-β-glucan antibodies (ABA) bind to Imprime PGG.¹⁷
- 3. Through the classical pathway of complement activation, Imprime PGG becomes opsonized.^{1,17}

MDSC

BIOTHERA

the immune health company


NK Cell

Reference list provided at the end of the presentation.

Complement

T cell

Upstream Initiator Mechanisms

Monocytes

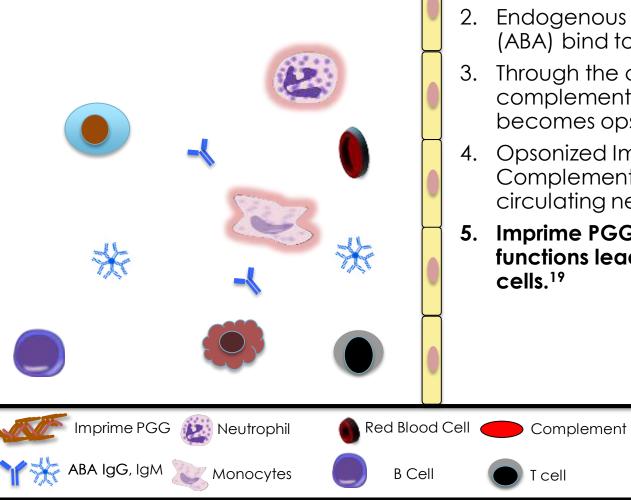
- Imprime PGG is administered via IV infusion to a cancer patient.
- Endogenous anti-β-glucan antibodies (ABA) bind to Imprime PGG.¹⁷
- Through the classical pathway of complement activation, Imprime PGG becomes opsonized.^{1,17}
- **Opsonized Imprime PGG binds to** Complement Receptor 3 (CR3) on circulating neutrophils and monocytes.¹

MDSC

BIOTHERA

the immune health company

NK Cell


Reference list provided at the end of the presentation.

B Cell

Complement

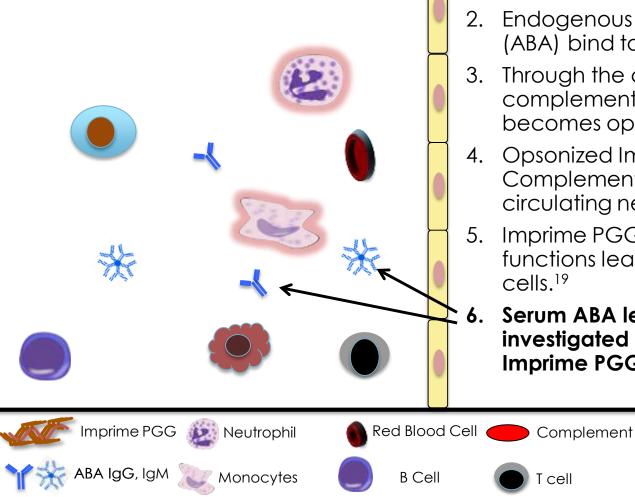
T cell

Upstream Initiator Mechanisms in the Peripheral Blood

- 1. Imprime PGG is administered via IV infusion to a cancer patient.
- Endogenous anti-β-glucan antibodies (ABA) bind to Imprime PGG.¹⁷
- 3. Through the classical pathway of complement activation, Imprime PGG becomes opsonized.^{1,17}
- 4. Opsonized Imprime PGG binds to Complement Receptor 3 (CR3) on circulating neutrophils and monocytes.¹
- 5. Imprime PGG modulates innate immune functions leading to "priming" of these cells.¹⁹

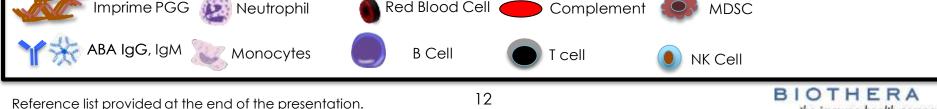
MDSC

BIOTHERA


the immune health company

NK Cell

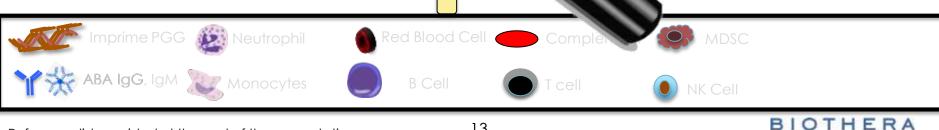
Reference list provided at the end of the presentation.


11

Upstream Initiator Mechanisms in the Peripheral Blood

- 1. Imprime PGG is administered via IV infusion to a cancer patient.
- Endogenous anti-β glucan antibodies (ABA) bind to Imprime PGG.¹⁷
- 3. Through the classical pathway of complement activation, Imprime PGG becomes opsonized.^{1,17}
- 4. Opsonized Imprime PGG binds to Complement Receptor 3 (CR3) on circulating neutrophils and monocytes.¹
- 5. Imprime PGG modulates innate immune functions leading to "priming" of these cells.¹⁹
- 6. Serum ABA levels are currently being investigated as a potential biomarker for Imprime PGG activity.¹⁸

the immune health company


Upstream Initiator Mechanisms in the Peripheral Blood

- (ABA) bind to Imprime PGG.¹⁷
- Through the classical pathway of complement activation, Imprime PGG
- Opsonized Imprime PGG binds to 4. Complement Receptor 3 (CR3) on circulating neutrophils and monocytes.¹
 - functions leading to "priming" of these

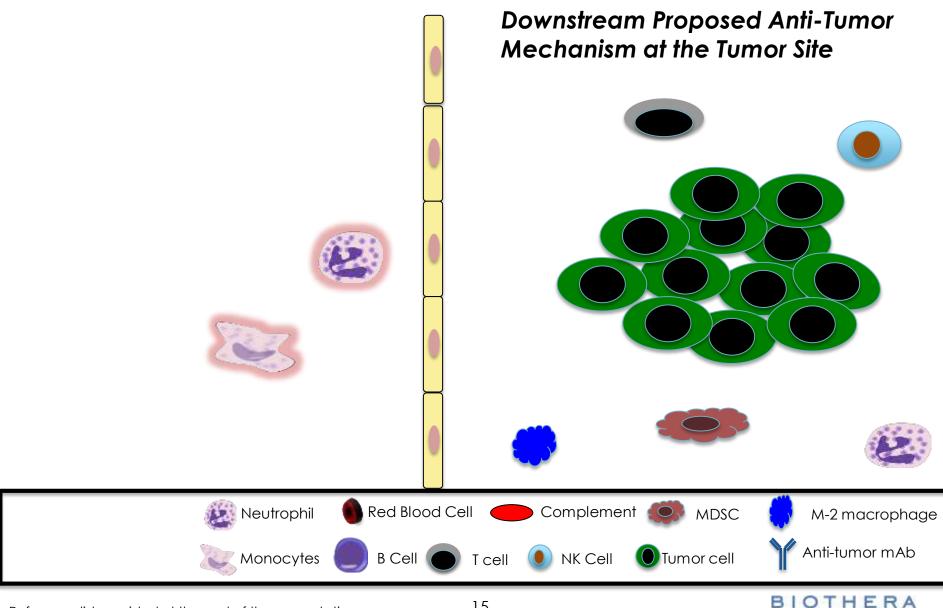
ABA levels are currently being ted as a potential biomarker for G activity.¹⁸

the immune health company

Reference list provided at the end of the presentation.

CR3 is a dual-occupancy receptor²⁻⁴

- Site 1 The I-Domain: Binds multiple I-Domain physiologic ligands, including C3b/iC3b.²⁻⁶
- Site 2 The Lectin-Like Domain: Binds carbohydrates, including β–glucans.^{2-4, 7-10}

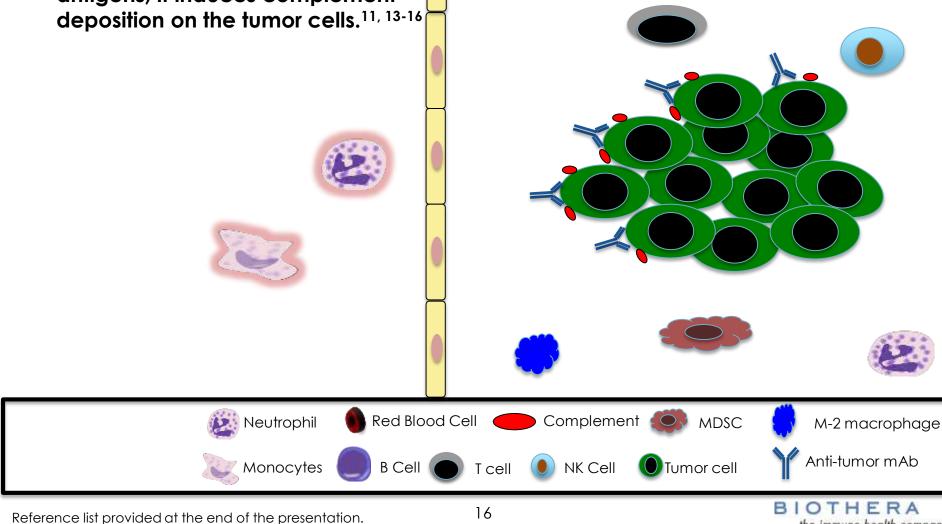

Ligand binding of both Site 1 <u>and Site 2</u> is required for full receptor activation and induction of cytotoxic activities. ^{2-4, 7-11}

Complement Receptor 3 (CR3)

Lectin-Like Domain

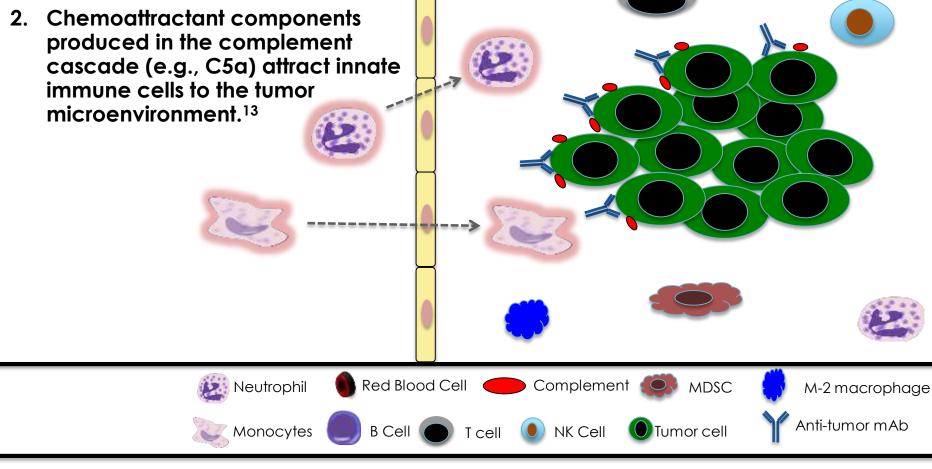
Neutrophil or Monocyte

Reference list provided at the end of the presentation.



Reference list provided at the end of the presentation.

the immune health company


When a complement-activating 1. anti-tumor mAb binds to tumor cell antigens, it induces complement deposition on the tumor cells.^{11, 13-16}

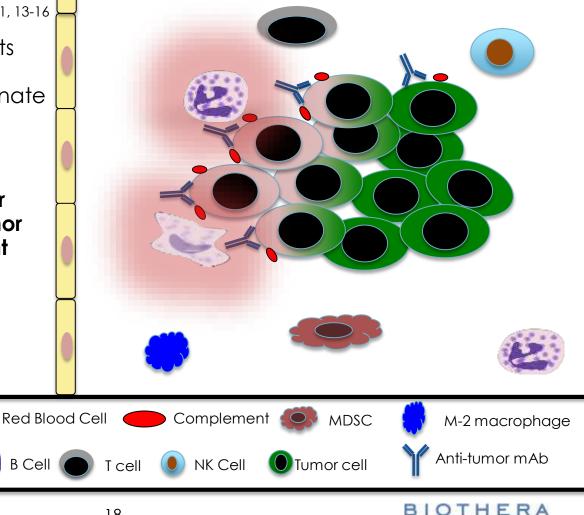
Downstream Proposed Anti-Tumor Mechanism at the Tumor Site

the immune health company

1. When a complement-activating anti-tumor mAb binds to tumor cell antigens, it induces complement deposition on the tumor cells.^{11, 13-16} Downstream Proposed Anti-Tumor Mechanism at the Tumor Site

Reference list provided at the end of the presentation.

17


BIOTHERA the immune health company

- When a complement-activating 1. anti-tumor mAb binds to tumor cell antigens, it induces complement deposition on the tumor cells.^{11, 13-16}
- Chemoattractant components 2. produced in the complement cascade (e.g., C5a) attract innate immune cells to the tumor microenvironment.¹³
- Primed neutrophils and 3. macrophages exert anti-tumor activity against opsonized tumor cells through a CR3 dependent mechanism.^{11, 13-16}

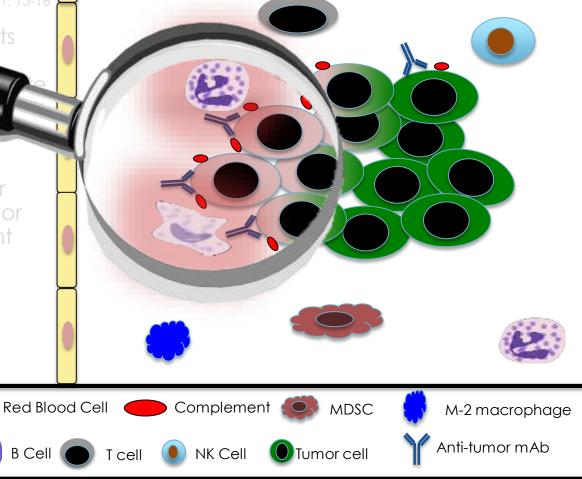
Neutrophil

Monocytes

Downstream Proposed Anti-Tumor Mechanism at the Tumor Site

the immune health company

Reference list provided at the end of the presentation.


B Cell

- 1. When a complement-activating anti-tumor mAb binds to tumor cell antigens, it induces complement deposition on the tumor cells.^{11, 13-16}
- 2. Chemoa produce cascade (e.g., immune cells to the microenvironment.¹³
- 3. Primed neutrophils and macrophages exert anti-tumor activity against opsonized tumor cells through a CR3 dependent mechanism.^{11, 13-16}

Neutrophil

Monocytes

Downstream Proposed Anti-Tumor Mechanism at the Tumor Site

Reference list provided at the end of the presentation.

BIOTHERA the immune health company

- Site1 engagement by iC3b on the tumor cell (following administration of a tumorantigen-targeted, complementactivating antibody)
- Site 2 engagement by administration of beta glucan

may result in neutrophil/monocyte killing of tumor cells ¹³⁻¹⁶

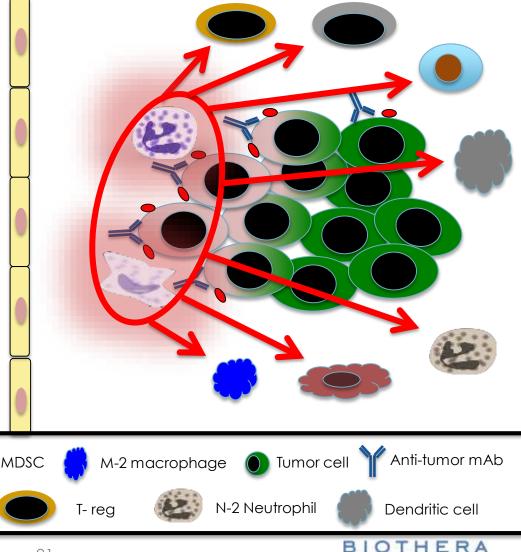
Tumor Cell iC3b Cytotoxicity directed toward the tumor cell **β-Glucan**

Neutrophil or Monocyte

Reference list provided at the end of the presentation.

- 1. When a complement-activating anti-tumor mAb binds to tumor cell antigens, it induces complement deposition on the tumor cells.^{11, 13-16}
- 2. Chemoattractant components produced in the complement cascade (e.g., C5a) attract innate immune cells to the tumor microenvironment.¹³
- 3. Primed neutrophils and macrophages can exert anti-tumor activity against opsonized tumor cells through a CR3 dependent mechanism.^{11, 13-16}
- 4. Primed neutrophils and macrophages can also modulate responses of other cells in the tumor environment (Bystander Effect)

Complement


NK Cell

T cell

Neutrophil

Monocytes

Tumor Microenvironment


the immune health company

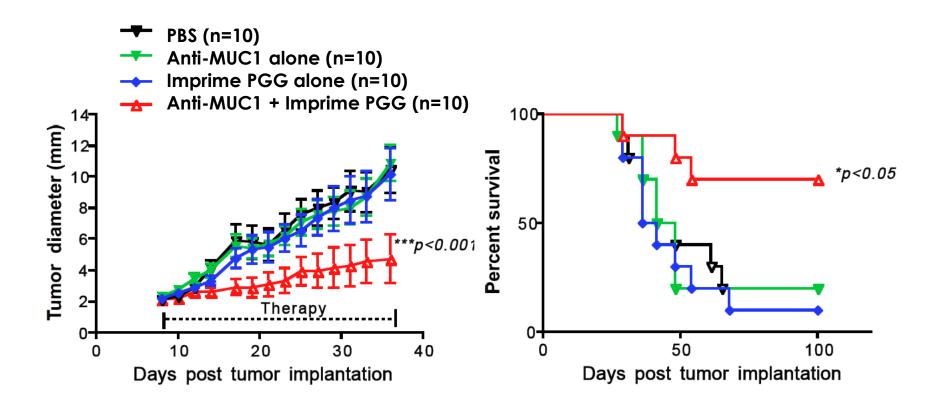
2

Imprime PGG Value Proposition

An **innate immune cell activator** in phase 3 clinical development in **combination with therapeutic antibodies** for the treatment of **cancer**

- Novel Mechanism of Action
 - Activates innate immune effector cells to kill antibodytargeted, complement opsonized cancer cells
- Favorable Safety Profile
 - Based on > 20 preclinical toxicology studies, and Phase 1 and Phase 2 clinical trials
 - Over 360 subjects dosed to date
- Compelling Preliminary Efficacy Results
 - Multiple Phase 2 studies performed in a range of cancers
- Potential for Patient Selection
 - Potential for a serum biomarker-led clinical program
 - Substantially increases chances of technical success
- Broad Potential Indication Spectrum
 - Combination with any complement-activating antibody

Imprime PGG Potential Indication Spectrum ^a


Indication	Treatment Setting	Combination Antibody	Geographic Region (US, EU)
Oncology			
Breast Cancer	Neoadjuvant	Pertuzumab, Trastuzumab	US p
	Metastatic	Trastuzumab	US, EU
		Bevacizumab	EU
Cervical Cancer	Metastatic	Bevacizumab	US
Colorectal Cancer	Metastatic	Bevacizumab	US, EU
	Merusiulic	Cetuximab	US, EU
Gastric Cancer	Metastatic	Trastuzumab	US, EU
		Ramucirumab	US
Head and Neck (HNSCC)	Metastatic	Cetuximab	US, EU
Non-Small Cell Lung Cancer	Metastatic	Bevacizumab	US, EU
		Ramucirumab	Pending
Ovarian Cancer	Metastatic	Bevacizumab	US, EU
Renal Cell Cancer	Metastatic	Bevacizumab	US, EU
Hematology			
B-Cell Malignancies (CD20+)		Rituximab	US, EU
		Obinutuzumab	US, EU
		Ofatumumab	US, EU
^a incomplete representation; indications subject to change; ^b accelerated approval only 2			

Imprime PGG Has Demonstrated Synergistic Anti-Tumor Activity in Multiple Tumor Models with Multiple Antibodies

Syngeneic	Xenogeneic
 T-Cell Lymphoma: RMAS-MUC1/anti-MUC1 Mab¹ 	Non-Small Cell Lung Carcinoma (KRAS mutant):
 Wild-type mice RMAS-MUC1/anti-MUC1 MAb² CR3-deficient mice 	 NCI-H23/Cetuximab⁴
 RMAS-MUC1/anti-MUC1 MAb¹ C3-deficient mice 	 Non-Small Cell Lung Carcinoma: PC14PE6/Bevacizumab (orthotopic)³
 RMAS-MUC1/anti-MUC1 MAb¹ Neutrophil-deficient mice 	PC14PE6/Bevacizumab ³
10; at al. Placed 117; (205 (22) (2011); 21; at al.	 Ovarian Carcinoma: SKOV3/Bevacizumab⁵

¹Qi, et al., Blood, 117: 6825-6836 (2011); ²Li, et al., Journal of Immunology, 177:1661-1669 (2006); ³Zhong, et al., Journal of Immunotherapy 32: 703-712 (2009); ⁴Li, et al., Cancer Research, 67:7421-7430 (2007); ⁵Salvador, et al., Clinical Cancer Research, 14:1239-1247 (2008)

Anti-Tumor and Survival Enhancing Activity of Imprime PGG plus Anti-MUC1 Antibody in T-Cell Lymphoma Model

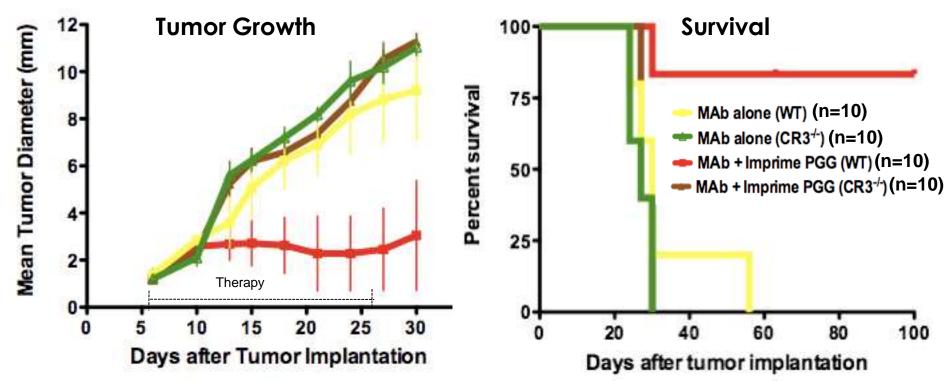
Mice: C57BI/6

Tumor: Murine lymphoma w/human MUC-1 (Mouse RMA-S-Muc1 T-cell lymphoma) implanted subcutaneously

MAb: BCP8 (mouse IgG2a anti-human MUC-1)

Treatment Regimen: Imprime PGG (1200 µg/mouse) and BCP8 (200 µg/mouse) injected intravenously twice per week

Qi, C. et al., Blood, 117: 6825-6836, 2011

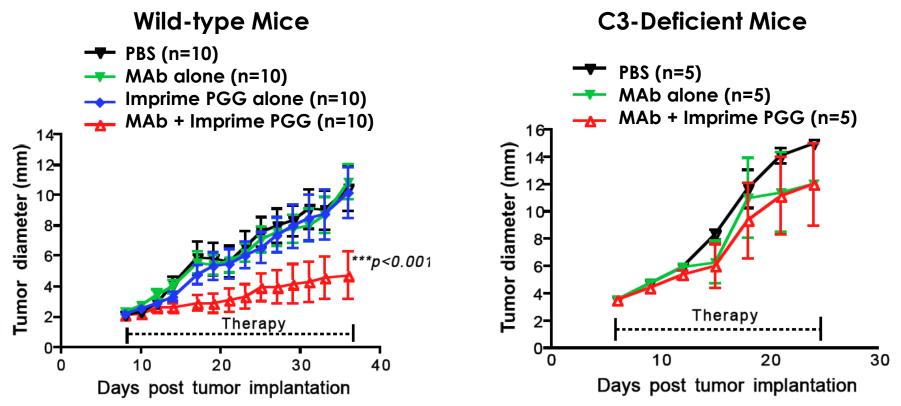

Imprime PGG Has Demonstrated Synergistic Anti-Tumor Activity in Multiple Tumor Models with Multiple Antibodies

Syngeneic	Xenogeneic
Syngeneic	Aenogeneic
<u>T-Cell Lymphoma:</u>	Non-Small Cell Lung Carcinoma (KRAS
 RMAS-MUC1/anti-MUC1 Mab¹ 	mutant):
- Wild-type mice	NCI-H23/Cetuximab ⁴
RMAS-MUC1/anti-MUC1 MAb ²	
- CR3-deficient mice	Non-Small Cell Lung Carcinoma:
 RMAS-MUC1/anti-MUC1 MAb¹ 	 PC14PE6/Bevacizumab
- C3-deficient mice	(orthotopic) ³
 RMAS-MUC1/anti-MUC1 MAb¹ 	PC14PE6/Bevacizumab ³
- Neutrophil-deficient mice	
	Ovarian Carcinoma:
	SKOV3/Bevacizumab ⁵

¹Qi, et al., Blood, 117: 6825-6836 (2011); ²Li, et al., Journal of Immunology, 177:1661-1669 (2006); ³Zhong, et al., Journal of Immunotherapy 32: 703-712 (2009); ⁴Li, et al., Cancer Research, 67:7421-7430 (2007); ⁵Salvador, et al., Clinical Cancer Research, 14:1239-1247 (2008)

Imprime PGG Mechanism of Action is Complement Receptor 3 (CR3) Dependent

Inhibition of tumor growth and prolonged survival is seen in wild type mice (red) but not in CR3 deficient mice (brown).


Mice: C57Bl/6 - wild-type (WT) and complement receptor 3 deficient (CR3 -/-) Tumor: Murine lymphoma w/ human MUC-1 (Mouse RMA-S-Muc1 T-cell lymphoma) implanted subcutaneously MAb: BCP8 (mouse lgG2a anti-human MUC-1)

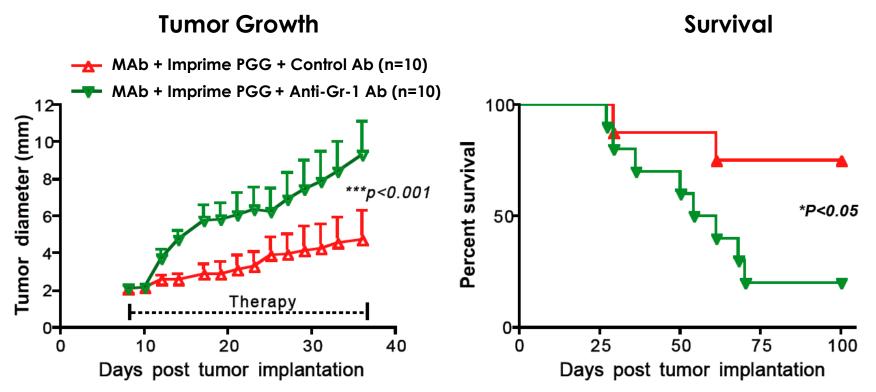
Treatment Regimen: Imprime PGG (1200 µg/mouse) and BCP8 (200 µg/mouse) injected intravenously twice per week

Li et al., Journal of Immunology, 177:1661-1669, 2006.

Imprime PGG Mechanism of Action is Complement Dependent

Inhibition of tumor growth and prolonged survival is seen in wild type mice (left) but not in complement deficient mice (right).

Mice: C57BI/6 - wild-type and complement deficient


Tumor: Murine lymphoma w/human MUC-1 (Mouse RMA-S-MUC1 T-cell lymphoma) implanted subcutaneously

MAb: BCP8 (mouse IgG2a anti-human MUC-1)

Treatment Regimen: Imprime PGG (1200 µg/mouse) and BCP8 (200 µg/mouse) injected intravenously twice per week

Qi, C. et al., Blood117:6825-6836, 2011.

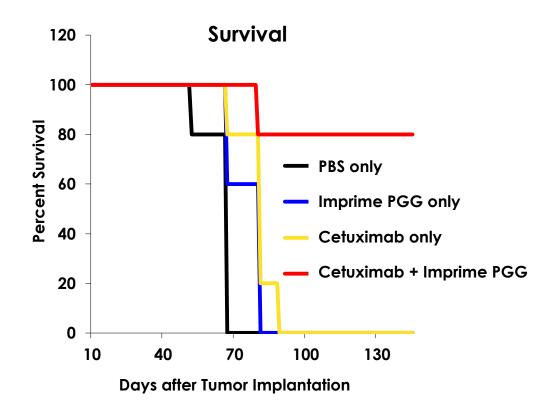
Inhibition of tumor growth and prolonged survival is seen in non-neutrophil depleted mice (red) but not in neutrophil depleted mice (green).

Mice: C57BI/6

Anti-Gr-1 antibody administered to deplete neutrophils (controls were administered an isotype control antibody) Tumor: Murine lymphoma w/ human MUC-1 (Mouse RMA-S-MUC1T-cell lymphoma) implanted subcutaneously MAb: BCP8 (mouse IgG2a anti-human MUC-1)

Treatment Regimen: Imprime PGG (1200 µg/mouse) and BCP8 (200 µg/mouse)iinjected intravenously twice per week Qi, C. et al., Blood, 117: 6825-6836, 2011.

BIOTHERA the immune health company


Imprime PGG Has Demonstrated Synergistic Anti-Tumor Activity in Multiple Tumor Models with Multiple Antibodies

Syngeneic	Xenogeneic
 T-Cell Lymphoma: RMAS-MUC1/anti-MUC1 Mab¹ Wild-type mice 	Non-Small Cell Lung Carcinoma (KRAS mutant): • NCI-H23/Cetuximab ⁴
 RMAS-MUC1/anti-MUC1 MAb² CR3-deficient mice RMAS-MUC1/anti-MUC1 MAb¹ C3-deficient mice RMAS-MUC1/anti-MUC1 MAb¹ RMAS-MUC1/anti-MUC1 MAb¹ Neutrophil-deficient mice 	 Non-Small Cell Lung Carcinoma: PC14PE6/Bevacizumab (orthotopic)³ PC14PE6/Bevacizumab³
	 Ovarian Carcinoma: SKOV3/Bevacizumab⁵

¹Qi, et al., Blood, 117: 6825-6836 (2011); ²Li, et al., Journal of Immunology, 177:1661-1669 (2006); ³Zhong, et al., Journal of Immunotherapy 32: 703-712 (2009); ⁴Li, et al., Cancer Research, 67:7421-7430 (2007); ⁵Salvador, et al., Clinical Cancer Research, 14:1239-1247 (2008)

Anti-Tumor Activity of Imprime PGG Has Also Been Shown With Clinically Used Monoclonal Antibodies: Cetuximab

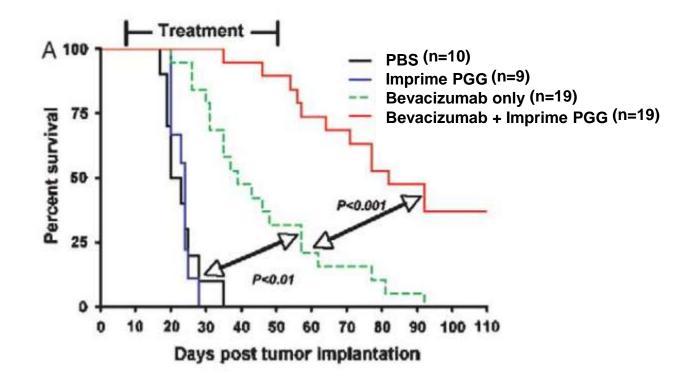
Imprime PGG administered in combination with cetuximab prolongs survival even in a KRAS-mutant lung cancer xenograft model.

Mice: Fox Chase Institute for Cancer Research (ICR) severe combined immune deficient (SCID) Tumor: Human NCI-H23 non-small-cell lung carcinoma (contains KRAS mutation, G12C) Antibody: Cetuximab (Erbitux®; chimeric IaG1 anti-EGFR) Treatment Regimen: Imprime PGG (1200 µg/mouse) and cetuximab (150 µg/mouse) injected intravenously twice per week for four weeks beginning on Day 10 N = 8 - 9 mice per treatment group 31

Li et al., Cancer Research, 67:7421-7430, 2007.

BIOTHERA

the immune health company


Imprime PGG Has Demonstrated Synergistic Anti-Tumor Activity in Multiple Tumor Models with Multiple Antibodies

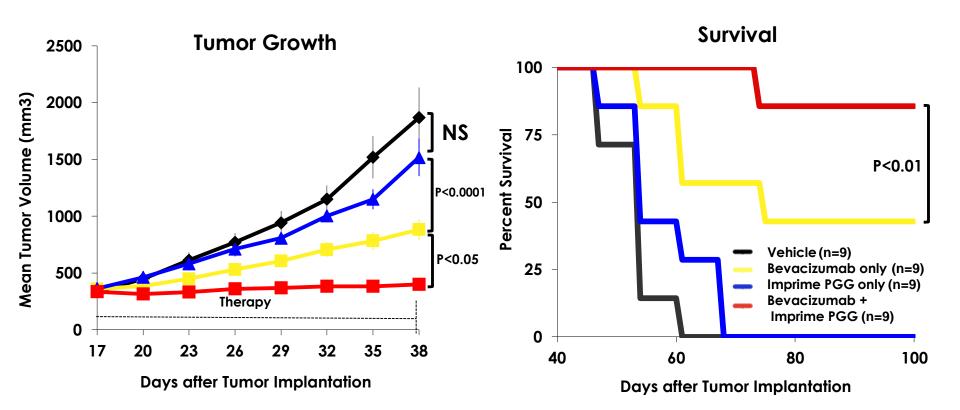
Syngeneic	Xenogeneic
 T-Cell Lymphoma: RMAS-MUC1/anti-MUC1 Mab¹ Wild-type mice RMAS-MUC1/anti-MUC1 MAb² CR3-deficient mice RMAS-MUC1/anti-MUC1 MAb¹ C3-deficient mice RMAS-MUC1/anti-MUC1 MAb¹ Neutrophil-deficient mice 	Non-Small Cell Lung Carcinoma (KRAS mutant):

¹Qi, et al., Blood, 117: 6825-6836 (2011); ²Li, et al., Journal of Immunology, 177:1661-1669 (2006); ³Zhong, et al., Journal of Immunotherapy 32: 703-712 (2009); ⁴Li, et al., Cancer Research, 67:7421-7430 (2007); ⁵Salvador, et al., Clinical Cancer Research, 14:1239-1247 (2008)

Anti-Tumor Activity of Imprime PGG Has Also Been Shown With Clinically Used Monoclonal Antibodies: Bevacizumab

Imprime PGG administered in combination with bevacizumab prolongs survival in a PC14PE6 orthotopic lung cancer xenograft model.

Mice: Fox Chase Institute for Cancer Research (ICR) severe combined immune deficient (SCID Tumor: PC14PE6 (human lung cell line) MAb: Bevacizumab (Avastin®; human IgG1 anti-VEGF) Treatment Regimen: Imprime PGG (1200 µg/mouse) and bevacizumab (100 µg/mouse) injected intravenously twice per week for three weeks beginning on Day 7; Zhong, W. et al. J. Immunotherapy 32: 703-712 (2009) Note: Flow cytometric analysis demonstrated that PC14PE6 cells express cell-surface VEGF.


Imprime PGG Has Demonstrated Synergistic Anti-Tumor Activity in Multiple Tumor Models with Multiple Antibodies

SyngeneicXenogeneicI-Cell Lymphoma: • RMAS-MUC1/anti-MUC1 Mab1 • Wild-type miceNon-Small Cell Lung Carcinoma (KRAS mutant): • NCI-H23/Cetuximab4RMAS-MUC1/anti-MUC1 MAb2 • CR3-deficient miceNon-Small Cell Lung Carcinoma: • NCI-H23/Cetuximab4RMAS-MUC1/anti-MUC1 MAb1 • C3-deficient micePC14PE6/Bevacizumab (orthotopic)3 • PC14PE6/Bevacizumab3RMAS-MUC1/anti-MUC1 MAb1 • Neutrophil-deficient micePC14PE6/Bevacizumab3 • PC14PE6/Bevacizumab3		
 RMAS-MUC1/anti-MUC1 Mab¹ Wild-type mice RMAS-MUC1/anti-MUC1 MAb² CR3-deficient mice RMAS-MUC1/anti-MUC1 MAb¹ C3-deficient mice RMAS-MUC1/anti-MUC1 MAb¹ PC14PE6/Bevacizumab	Syngeneic	Xenogeneic
	 RMAS-MUC1/anti-MUC1 Mab¹ Wild-type mice RMAS-MUC1/anti-MUC1 MAb² CR3-deficient mice RMAS-MUC1/anti-MUC1 MAb¹ C3-deficient mice RMAS-MUC1/anti-MUC1 MAb¹ 	 mutant): NCI-H23/Cetuximab⁴ Non-Small Cell Lung Carcinoma: PC14PE6/Bevacizumab (orthotopic)³ PC14PE6/Bevacizumab³

¹Qi, et al., Blood, 117: 6825-6836 (2011); ²Li, et al., Journal of Immunology, 177:1661-1669 (2006); ³Zhong, et al., Journal of Immunotherapy 32: 703-712 (2009); ⁴Li, et al., Cancer Research, 67:7421-7430 (2007); ⁵Salvador, et al., Clinical Cancer Research, 14:1239-1247 (2008)

Anti-Tumor Activity of Imprime PGG Has Also Been Shown With Clinically Used Monoclonal Antibodies: Bevacizumab

Imprime PGG administered in combination with bevacizumab inhibits tumor growth and prolongs survival in a SK-OV-3 ovarian cancer xenograft model.

Mice: Fox Chase Institute for Cancer Research (ICR) severe combined immune deficient (SCID) Tumor: Human SK-OV-3 ovarian carcinoma

Antibody: Bevacizumab (Avastin®; human IgG1 anti-VEGF)

Treatment Regimen: Imprime PGG (1200 µg/mouse) and bevacizumab (100 µg/mouse) injected intravenously twice per week for three weeks beginning on Day 17;

Salvador et al., Clinical Cancer Research, 14:1239-1247, 2008.

Note: Flow cytometric analysis demonstrated that SK-OV-3 cells express cell-surface VEGF.

Summary: Proof of Activity / Mechanism of Action

- Imprime PGG's novel mechanism redirects the cytotoxic abilities of innate immune cells to kill monoclonal antibody targeted tumor cells, with an **absolute requirement** for:
 - CR3
 - Complement
 - Innate immune cells (neutrophils and monocytes)
- Imprime PGG is thought to enable innate immune cells to recognize and kill tumor cells **'flagged' by monoclonal antibodies (MAb)**
 - Imprime PGG's mechanism does not require the normal function of the MAb to elicit anti-tumor activity (e.g., signal blockade, CDC, ADCC).
 - However, Imprime PGG does not interfere with these MAb functions.
- In vivo, Imprime PGG inhibits tumor growth and prolongs overall survival in multiple tumor models using different tumor-targeted monoclonal antibodies

Biothera's Clinical Program Is Guided by Expert Advisors

Leonard Saltz, M.D.

Member of Memorial Sloan-Kettering Cancer Center and Attending Physician at Memorial Hospital for Cancer and Allied Diseases, New York, NY

Eric Van Cutsem M.D., Ph.D.

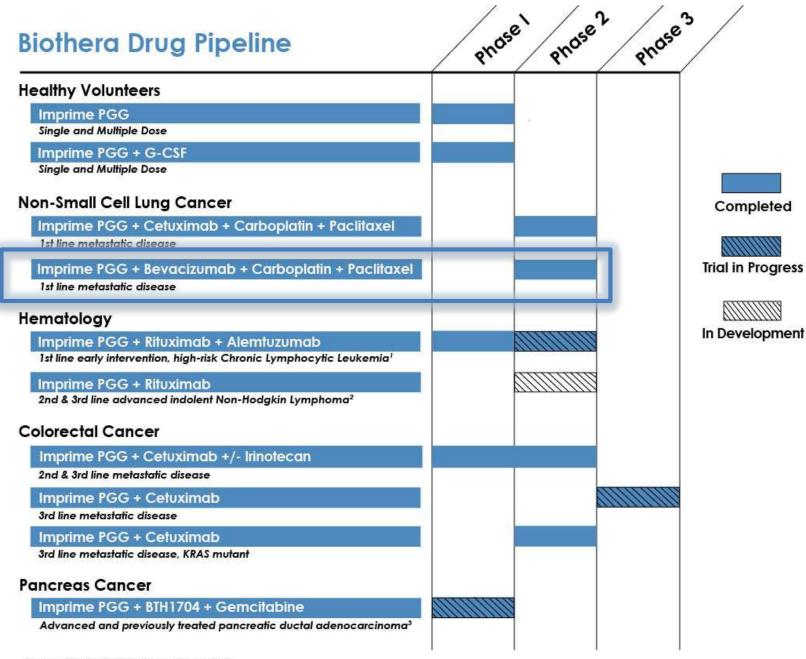
Professor of Internal Medicine at the University of Leuven, and head of division of Digestive Oncology at the University Hospital Gasthuisberg in Leuven, Belgium

Arkadiusz Dudek, M.D., Ph.D.

Professor and Medical Director, Oncology Clinical Trials at University of Illinois, Chicago, IL. Previously, Associate Professor of Medicine and Director of Clinical Trials Office, Hematology/Oncology and Transplantation Division at University of Minnesota

Roy Herbst, M.D., Ph.D.

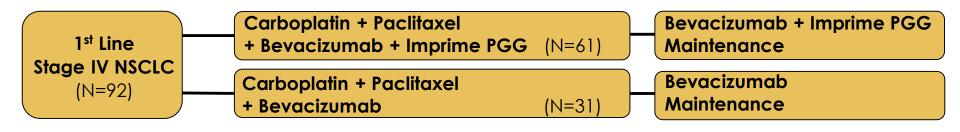
Chief of Medical Oncology and Associate Director for Translational Research at Yale Cancer Center, New Haven, CT


Fred Hirsch, M.D., Ph.D.

Professor of Medicine and Pathology at University of Colorado School of Medicine, Aurora, CO. Chief Executive Officer of International Association for the Study of Lung Cancer (IASLC)

Jerome Ritz, M.D.

Professor of Medicine, Harvard Medical School, Dana-Farber Cancer Institute in Boston, MA. Director for Clinical Trial Cores, Cancer Vaccine Center; Executive Director, Cell Manipulation Core Facility



1) Investigator-initiated trial, Mayo Clinic

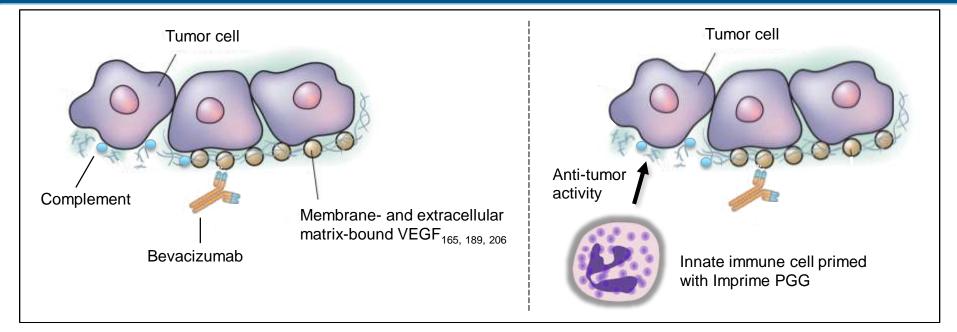
2) Investigator-initiated trial, Dana-Farber Cancer Institute

3) Investigator-initiated trial, University of Illinois Cancer Center

Non-Small Cell Lung Cancer (NSCLC) Open-Label, Randomized Phase 2 Study (LCA0821)

- Primary Endpoint
 - Objective Response Rate (modified RECIST v1.0)

Secondary Endpoints


- Disease Control Rate (CR, PR, SD)
- Duration of Response
- Time to Progression
- Overall Survival

Treatment

- Imprime PGG (4 mg/kg IV) Days 1, 8 and 15 of each 3-week treatment cycle
- Bevacizumab (15 mg/kg IV) Day 1 of each cycle
- Carboplatin (AUC 6), Paclitaxel (200 mg/m²) Day 2 of each cycle (for 4 to 6 cycles)
- Imaging Assessments
 - CT chest, abdomen (every 6 weeks)
- Simon 2-Stage Design
 - 90% power to detect ORR improvement from \leq 30 to \geq 50%

- Safety
- Pharmacokinetics

Rationale for Combining Imprime PGG with Bevacizumab

VEGF (vascular endothelial growth factor) is overexpressed by many human cancers, including NSCLC.^{20,21}

Although VEGF is secreted, a significant fraction remains bound to the cell surface and the extracellular matrix by virtue of its heparin-binding affinity, and its bioavailability is regulated by proteolytic cleavage.²²⁻²⁵

Bevacizumab is a humanized IgG1 antibody that binds to all human VEGF-A isoforms and bioactive proteolytic cleavage fragments.²⁵ Bevacizumab has been shown to accumulate in the tumor microenvironment due to local accretion of cell- and matrix-associated VEGF.²⁶⁻³¹

Binding of bevacizumab to surface-retained VEGF can induce complement (C3) deposition (opsonization),^{32,33} but does not result in cell- or complement-mediated cytotoxicity.³³

Imprime PGG is a novel innate immune cell modulator that primes neutrophils, monocytes and macrophages through a complement receptor 3 (CR3)-dependent mechanism to exert anti-tumor activity against complement opsonized tumor cells.^{11,13-16}

BIOTHERA

the immune health company

Analysis Populations (LCA0821)

- Primary Efficacy Population (PEP):
 - All subjects with an evaluable baseline CT scan and at least one evaluable post-baseline CT scan
- Safety Population:
 - All subjects receiving any drug treatment

Patient Disposition (LCA0821)

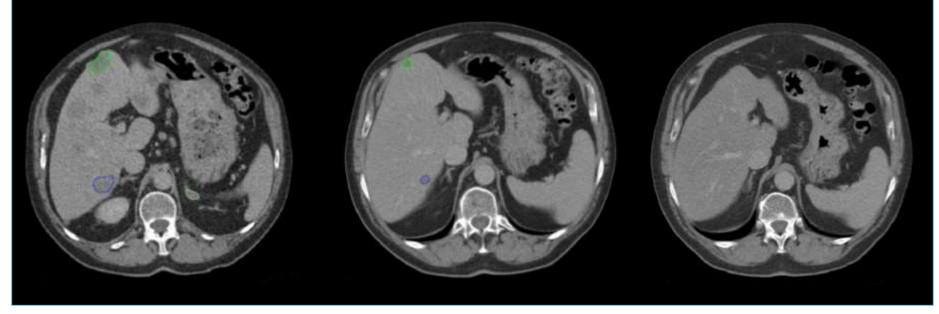
randomly	with NSCLC assigned (2:1) n = 92)
Assigned to Imprime PGG n = 61 Treated n = 59 Not treated n = 2	Assigned to Control n = 31 Treated n = 30 Not treated n = 1
Still receiving treatmentn = 2Discontinued treatmentn = 57	Still receiving treatmentn = 1Discontinued treatmentn = 29
Reasons for discontinuation from treatmentphaseDisease progression $n = 28 (45.9\%)$ Adverse event $n = 21 (34.4\%)$ Subject decision $n = 4 (6.6\%)$ Other $n = 6 (9.8\%)$	Reasons for discontinuation from treatmentphaseDisease progression $n = 13$ (41.9%)Adverse event $n = 12$ (38.7%)Subject decision $n = 1$ (3.2%)Other $n = 4$ (12.9%)
Ongoing survival follow-up n = 13	Ongoing survival follow-up n = 1
Included inEfficacy analysesn = 51 (83.6%)Central imaging reviewn = 50 (82.0%)Response evaluablen = 48 (78.7%)Safety and survival analysesn = 59 (96.7%)	Included inEfficacy analysesn = 23 (74.2%)Central imaging reviewn = 23 (74.2%)Response evaluablen = 23 (74.2%)Safety and survival analysesn = 30 (96.8%)

Baseline Demographics and Disease Characteristics (LCA0821)

Demographic or Disease Characteristic	Imprime PGG (n = 59)	Control (n = 30)
Age, years median (range)	59 (43, 76)	58 (28, 75)
Gender , n (%) Female	33 (55.9%)	16 (53.3%)
Male Race (Ethnicity p. (97)	26 (44.1%)	14 (46.7%)
Race / Ethnicity, n (%) White Asian or Pacific Islander Black	57 (96.6%) 1 (1.7%) 1 (1.7%)	30 (100%) 0 (0%) 0 (0%)
ECOG performance status, n (%) 0 1	31 (52.5%) 28 (47.5%)	20 (66.7%) 10 (33.3%)
Time from diagnosis of Stage IV NSCLC to randomization, median (range) days	18.0 (1, 168)	17.5 (7, 77)
Time from initial diagnosis of NSCLC to randomization, median (range) days	20.0 (1, 3171)	17.5 (7, 77)
Prior treatment for NSCLC , n (%) Surgery Radiotherapy [*]	8 (13.6) 2 (3.4)	2 (6.7) 0 (0.0)

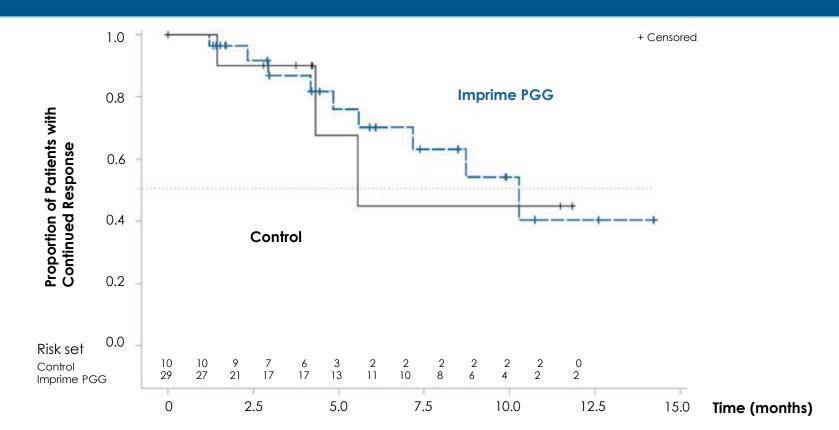
* excludes palliative radiation to the skeleton

Efficacy Results – Primary Endpoint (LCA0821)


		Imprime PGG (N=48)			Control		
Objective Tumor Response (Based on Central Radiology Review)	n	%	(95% CI)	n	%	(95% CI)	P-value
Objective Response Rate	29	60.4	(45.3, 74.2)	10	43.5	(23.2, 65.5)	0.2096
Complete Response	1	2.1		0	0.0		
Partial Response	28	58.3		10	43.5		
Stable Disease	16	33.3		11	47.8		
Progressive Disease	3	6.3		2	8.7		

Continued Regression of Lesions on Maintenance (LCA0821)

Baseline


Partial Response Week 14 (Pre-Cycle 5) after 4 cycles of chemotherapy Complete Response Week 47 (Pre-Cycle 15)

on maintenance therapy with Imprime PGG + Bevacizumab

- Target lesion locations at baseline included left hilum, mediastinal lymph nodes, adrenals, liver
- The patient remained on study and in CR at the time of the primary analysis (19 weeks later)

Duration of Response (LCA0821)

Duration of Response (months)	Median	(Q1, Q3)	P-value
Imprime PGG (N=29)	10.3	(5.6, NE)	0.9040
Control (N=10)	5.6	(4.3, NE)	0.7040

NE, not estimable

Progression-Related Time to Event Endpoints (LCA0821)

Time to Event Endpoints	Imprime PGG (n=50)		Control (n=23)		Hazard Ratio	Dycelue
Efficacy Analysis Set	median	(Q1, Q3)	median	(Q1, Q3)	(95% CI)	P-value
Time to Progression (months)	11.6	(6.2, 14.5)	9.6	(7.3, NE)	1.31 (0.54, 3.65)	0.5639
Progression-free Survival (months)	11.9	(6.1, 24.5)	10.2	(7.1, 22.3)	0.86 (0.49, 1.54)	0.5901

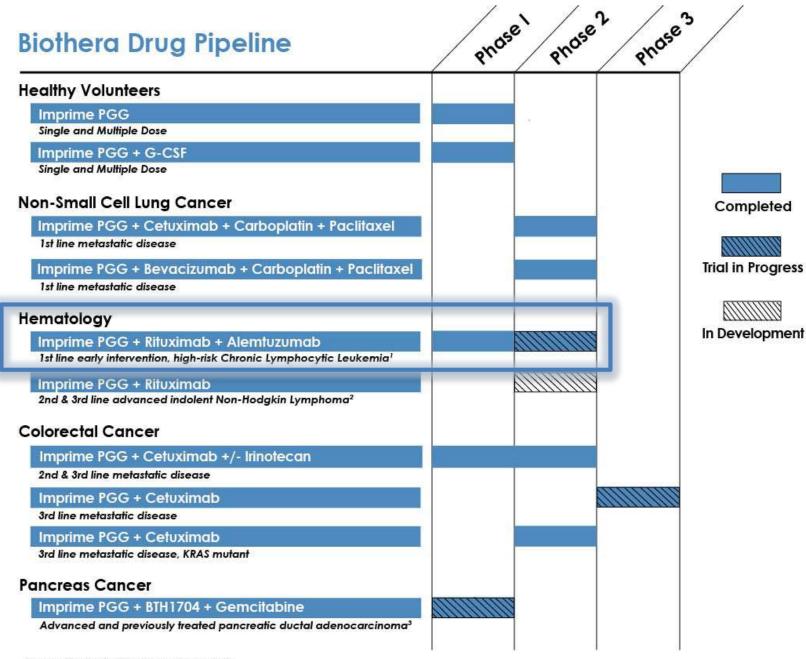
Overall Survival (LCA0821)

Time (months)

Overall Survival (months)	Median	(Q1, Q3)	Hazard Ratio (95% CI)	P-value
Imprime PGG (N=59)	16.1	(8.5, 27.9)	0.66	0.1345
Control (N=30)	11.6	(7.4, 22.3)	(0.38, 1.16)	

Safety Results (LCA0821)

	Imprime P	GG (N=59)	Control (N=30)	
Adverse Events (AEs)	All Ev	vents	All Events	
	n	%	n	%
Any AEs	58	98.3	30	100.0
CTCAE Grade 3 or 4 AEs	55	93.2	20	66.7
Serious AEs	24	40.7	13	43.3
AEs leading to treatment discontinuation*	22	37.3	13	43.3
Fatal AEs**	7	11.9	1	3.3


* disease progression was reported as AE leading to treatment discontinuation for 1 subject in each group

** included general physical health deterioration (n=3), disease progression, pneumonia, pneumothorax, hemorrhage intracranial (n=1 each) in the Imprime PGG group; and pneumonia (n=1) in the control group. All fatal AEs were deemed to be unrelated to Imprime PGG by the investigator

CTCAE, Common Terminology Criteria of Adverse Events

Conclusions (LCA0821)

- Imprime PGG in combination with carboplatin, paclitaxel and bevacizumab therapy resulted in substantial increases in objective response rate and duration of response in patients with non-squamous non-small cell lung cancer
- Although the study was not powered for survival, treatment with Imprime PGG was associated with a 4.5-month median increase in survival, and a 34% reduction in the risk of death
- **Overall**, Imprime PGG was **well tolerated**; adverse events mostly reflected expected toxicities with the backbone chemotherapy and bevacizumab or were complications of the patients' lung cancer. Premedication with low-dose corticosteroids and antihistamines is recommended
- Imprime PGG is a novel innate immune modulator that holds promise as an adjunct to antibody-based therapy for patients with non-small cell lung cancer

1) Investigator-initiated trial, Mayo Clinic

2) Investigator-initiated trial, Dana-Farber Cancer Institute

3) Investigator-initiated trial, University of Illinois Cancer Center

Sequential Phase 1 / Phase 2 study to assess safety and efficacy of Imprime PGG + Alemtuzumab + Rituximab in the treatment of subjects with early/intermediate stage, high-risk prognosis, chronic Iymphocytic leukemia

- Investigator-initiated study at the Mayo Clinic
- Lead Investigator

 Clive Zent, MD
- Co-Investigators
 - Stephen Ansell (Mayo Clinic)
 - Thomas Witzig (Mayo Clinic)
 - George Weiner (University of Iowa)

the immune health company

Phase 1/2 CLL Study: Preliminary Phase 1 Response Results^a (LS1084)

Phase 1 results with Imprime PGG in combination with Alemtuzumab and Rituximb in CLL

	Imprime PGG plus Alemtuzumab and Rituximab
Number of Evaluable Subjects	11
Overall Response (ORR)	11 (100%)
Partial Response (PR)	2 (18%)
Nodular Partial Response (nPR)	1 (9%)
Complete Response (CR)	8 (73%)

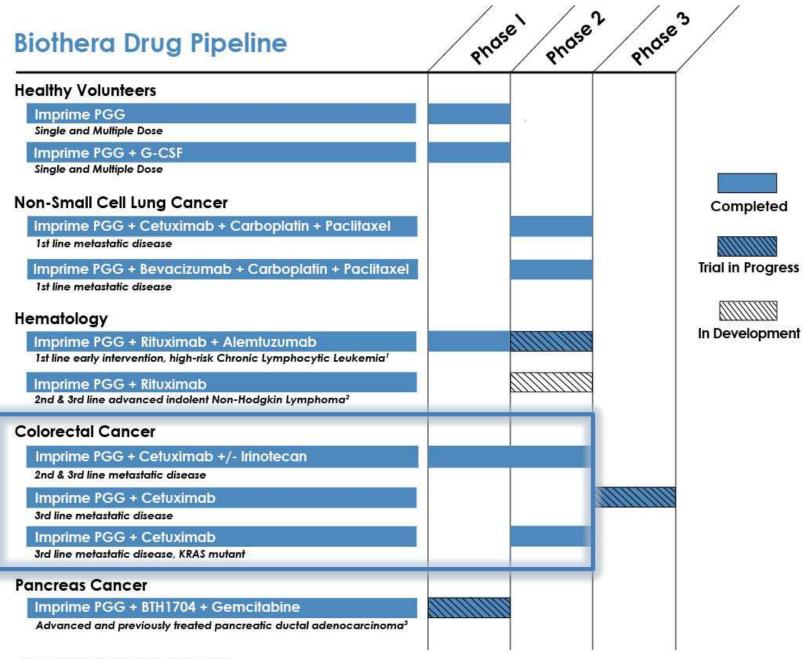
Phase 2 of the study powered to see an improvement in complete response (CR) from 30% to 50%

^a Zent et al., Blood 120: Abstract 1792, 2012; Updated data as of 03/06/14 presented here. Responses according to IWCLL NCI-WG96 update (Hallek et al, Blood 111:5446-5456, 2008);

Phase 1/2 CLL Study: Preliminary Phase 1 Response Results by Risk Factor^a (LS1084)

Subject	Imprime PGG Dose (mg/kg)	High-Risk of Progression Prognostic Factor	Response
LS4827	1.0	UnMut IgH _v & ZAP	CR
LS3775	1.0	UnMut IgH _v & ZAP	CR
LS4782	1.0	17p-	PR
LS5074	2.0	11q-	CR
LS4877	2.0	11q-	nPR
LS5196	2.0	17p-	CR
LS-4973	4.0	17p-	CR
LS3217	4.0	UnMut IgH _v & ZAP	CR
LS5177	4.0	11q-	PR
L55245	4.0	17p-	CR
LS4473	4.0	VH 3-21 & ZAP	CR

^a Zent et al., Blood 120: Abstract 1792, 2012; Updated data as of 03/06/14 presented here. Responses according to IWCLL NCI-WG96 update (Hallek et al, Blood 111:5446-5456, 2008); CR = complete response; nPR = nodular partial response; PR = partial response;


Median Follow-up				
Imprime PGG Subjects	Imprime PGG in 17p ⁻ Subjects	Historical 1 st Line Treatments in 17p- Subjects		
(N=11) 31.1months (22.9mo - 37.0 mo)	(N=4) 29.3 months (24.5mo - 34.4 mo)	<24 months ^b		

No Deaths Have Occurred to Date

^a Data as of 03/06/14. ^b Stilgenbauer and Zenz, ASH Educational Book, 1:481-488, 2010.

Phase 1/2 CLL Study Status

- Phase 1, which is the Imprime PGG dose-escalating portion of the study, is complete:
 - No DLTs observed to-date
 - 4 mg/kg Imprime PGG dose chosen for Phase 2
 - Phase 2 enrollment in progress
 - Early results show a promising CR rate, above that expected from prior reported alemtuzumab/rituximab results, including in subjects with 17p deletion.
- No deaths have occurred to date, with promising interim survival in 17p deletion subjects.
- No safety concerns to date
 - Grade 3 AEs were diarrhea (n=3), increased transaminase levels, dehydration, gastritis, hypertension, hyponatremia, hypertension (each n=1)
 - Grade 4 AEs were neutropenia (n=2) and febrile neutropenia (n=1)

1) Investigator-initiated trial, Mayo Clinic

2) Investigator-initiated trial, Dana-Farber Cancer Institute

3) Investigator-initiated trial, University of Illinois Cancer Center

Imprime PGG Clinical Response Summary

Indication	Design	Control ORR	Imprime PGG ORR	Percent ORR Improvement	
Non-Small Cell Lung Cancer					
Cetuximab (Erbitux®) , Carboplatin/Paclitaxel	Randomized Controlled	23.1%	47.8%	107%	
Bevacizumab (Avastin®) , Carboplatin/Paclitaxel	Randomized Controlled	43.5%	60.4%	39%	
Colorectal Cancer					
Cetuximab (KRAS mutant)	Single Arm	~1% (0-2%) ª	6%	500%	
Cetuximab (not selected for KRAS)	Single Arm	11% a	24%	118%	
(KRAS wild type subset)		17% a	45%	165%	
Cetuximab, Irinotecan (not selected for KRAS)	Single Arm	16% °	30%	88%	
Hematological Malignancies					
Chronic Lymphocytic Leukemia Rituximab, Alemtuzumab ^b	Single Arm	37% a, b	73% ^b	97%	
ORR, Objective Response Rate ^a Historical reference; ^b interim data; ^c cc	omplete responses			BIOTHERA	

ERA

58

Potential Areas of Scientific Interest

- 1. Novel combinations with approved or advanced stage (phase 3 results available) complement-activating antibodies, in particular in areas of high unmet medical need (hematology or oncology)
 - Clinical safety and preliminary efficacy (e.g. combination with of atumumab in CLL)
- 2. Translational research studies elucidating evidence of biological impact in human
 - Clinical and correlative endpoints (e.g. pre-surgical window of opportunity or neo-adjuvant study in breast cancer)
- 3. Novel combinations in immune modulation
 - Preclinical or clinical research (e.g. PD-L1)

Questions / Discussion

References Cited in Presentation

- ¹Bose et al., Frontiers in Immunology, 4:1-13, 2013; ² Ross et al., Journal of Immunology, 134:3307-3315, 1985; ³Cain et al., Complement, 4:75-86, 1987; ⁴Ross et al., Complement, 4:61-74, 1987; ⁵ Diamond et Al., Journal of Cell Biology 120: 1031-1043, 1993; ⁶ Ueda et al., PNAS (USA), 91:10680-10684, 1994 ⁷ Thonrton et al., Journal of Immunology, 156:1235-1246, 1996; ⁸ Vetvicka et al., Journal of Clinical Investigation, 98:50-61, 1996; ⁹ Xia et al., Journal of Immunology, 162:2281-2290, 1999; ¹⁰ Xia et al., Journal of Immunology, 162:7285-7293, 1999; ¹¹ Li et al., Journal of Immunology, 177:6661-6669, 2006; ¹² Schenkein et al., Journal of Immunology, 126:7-10, 1981; ¹³ Li et al., Cancer Research, 67:7421-7430,2007; ¹⁴Salvador et al., Clinical Cancer Research, 14:1239-1247, 2008: ¹⁵ Zhong et al., Journal of Immunotherapy, 32:703-712, 2009; ¹⁶ Qi et al., Blood, 117:6825-6836, 2010;
- ¹⁷ Bose et al., Keystone Symposium, January 27, 2013, Vancouver, BC, Canada, Abstract/program # J4.
- ¹⁸ Bose et al., Journal of Clinical Oncology, 32 (15S) (Abstract #3045), 2014;
- ¹⁹ Antonysamy et al., Journal of Immunology 192:73.9 (Abstract), 2014;

References Cited in Presentation (cont'd)

²⁰ Reviewed in: Zhan P et al. J Thorac Oncol. 4:1094-1103, 2009: ²¹ Reviewed in: Bremnes RM et al, Lung Cancer. 51:143-158, 2006; ²² Houck KA et al, J Biol Chem. 267:26031-26037, 1992; ²³ Park JE et al, Mol Biol Cell. 4:1317-1326, 1993; ²⁴ Poltorak Z et al, J Biol Chem. 272:7151-158, 1997; ²⁵ Reviewed in: Ferrara N et al, Nat Rev Drug Discov. 3:391-400, 2004; ²⁶ Nagengast WB et al, J Nucl Med. 48:1313-1319, 2007; ²⁷ Stollman TH et al, Int J Cancer. 122):2310-2314, 2008; ²⁸ Stollman TH et al, Cancer Biother Radiopharm. 24:195-200, 2009; ²⁹ Oosting SF et al, Eur J Cancer. 7(suppl):72–73, 2010; ³⁰ Terwisscha van Scheltinga AGT et al, J Nucl Med. 52:1778-1785, 2011; ³¹ Paudyal B et al, J Biomed Sci. 21:35, 2014; ³² Gerber HP et al, Proc Natl Acad Sci U S A. 104:3478-3483, 2007; ³³ Wang Y et al, Angiogenesis. 7:335-345, 2004; ³⁴ Yervoy (ipilimumab) US Prescribing Information 12/2013 ³⁵Keytruda (pembrolizumab) US Prescribing Information 09/2014