Immodulon Therapeutics &
IMM-101
A Systemic Immunomodulator being Developed for Cancer Indications

Introduction
September 2015

Why is IMM-101 of interest?

- **Multi-modal systemic immunomodulator** containing heat killed *Mycobacterium obuense* (NCTC 13365) that can help restore effective anti-tumour immune function.

- **A hierarchy of clinical data suggests broad clinical applicability.** In a randomised Phase 2 pancreatic cancer study, up to 70% increase in median overall survival when added to gemcitabine; 33% 5 year survival in Stage IIIb – IV melanoma; compassionate use cases indicate potential activity in sarcoma, ovarian, uterine and prostate cancers.

- **Safety and tolerability.** Minimal additional safety burden.

- **Regulatory pathway clarity.** Formal and clear guidance on regulatory pathway from EMA and FDA; orphan drug status in EU and US.

- **In-house manufacturing** with scalable process, IP, know-how.

- **Collaborative approaches** allow more therapeutic options, including novel combinations to be evaluated in parallel with Immodulon’s core pancreatic cancer work.
Immodulon

- UK-based and incorporated, formed in 2007, backed solely by private investment
- Focused on cancer immunotherapy and the role of heat-killed mycobacteria as therapeutically useful systemic immunomodulators
- Clinically led with experienced management team, all with pharmaceutical and biotech industry backgrounds
- Goal of demonstrating *proof of concept* for lead product, IMM-101, in one cancer indication of significant medical need has been met
- Parallel investment in manufacturing has provided scaleable and commercially viable processes for drug substance and drug product

Why Collaborative Approaches are of Interest?

- **Additional expertise:**
 - Therapeutic area
 - Scientific knowledge
 - Biomarker research to aid patient selection and treatment efficiency
- **Additional product and indication options**
 - Enhanced access to novel combinations
 - Earlier access for patients if successful
- **Resource:**
 - Co-operation with leading clinical researchers
 - Increased capacity to exploit broad therapeutic potential of IMM-101
 - Enhanced commercial knowledge and capability

Experienced, committed and knowledgeable Immodulon team complemented by investigator-initiated research
Why Pancreatic Cancer as Initial Indication?

- Lack of effective alternative treatments
- Orphan indication benefits
- Short life expectancy so overall survival a realistic, achievable and objective measure of efficacy for proof-of-concept trial
- IMM-101 has the potential to extend survival horizon while preserving quality of life
- Randomised Phase 2 data constitute firmest available evidence base

A hierarchy of evidence suggests activity across a range of tumour types

Mutual Benefits

For Immodulon
- Parallel clinical development in different indications and with novel combinations
- Increased depth of expertise to enhance development strategy
- Potential resource synergies

For Collaborator
- Access to novel immunotherapeutic with attractive safety profile
- IMM-101 ideally suited for combination use
- Unique MoA with potential for broad clinical utility
- Proof of concept established in randomised Phase II clinical trial
IMM-101: Suspension of Heat Killed *Mycobacterium obuense* (NCTC13365) for Intradermal Injection

- Produced by fermentation, inactivated by autoclaving and aseptically filled into single use vials
- Standard dose 0.1mL of 10mg/mL suspension injected intradermally to the upper arm
- Safe and well tolerated
- Local effects at injection site occur with variable intensity but are easily managed

IMM-101: Multi-faceted but Directed Mechanism of Action

1. **Initial Innate Response**
 - Quick, Blunt, Potent

2. **Cancer micro-environment**
 - Chronic Inflammation
 - Antigens obscured
 - T-cell polarisation subverted
 - Cross-reacting antigens

3. **Adaptive Response**
 - Slow, sophisticated, memory
 - DC primed by IMM-101 induces beneficial Type I polarised T cell maturation
 - IL-2
 - INF-γ

4. **Inducing Damage**
 - Releasing cancer antigens
 - Immune reactivity
 - Immunosuppression

5. **Cancer cell**

6. **CDB+ Cytotoxic T cells and Macrophages thought to be prominent effector cells**

- Polarised M2→M1
- Type 1
- Type 2
- Th2
- TCell
- PRRs
- PAMP
- Mycobacterium
- γδ T Cell
- NK Cell
- Mφ
- DC
- INF-γ

IMM-101
Heat-inactivated *Mycobacterium obuense*
IMM-101: Proposed Mechanism of Action

1. Initial response involves the innate immune system with activation and polarization (M2→M1) of macrophages via precursor monocytes, natural killer cells and γδ T-cells.
2. Mycobacterial cell walls have multiple antigens - protein, carbohydrate and lipid - forming what has become known as the Pathogen Associated Molecular Pattern (PAMP). The PAMP interacts with pattern recognition receptors (PRR), specifically TLRs 2 and 6 and possibly others, on dendritic cells following intradermal injection of IMM-101. Intradermal delivery is important as the skin is one of the regions with a high concentration of dendritic cells.
3. This 'directs' the adaptive immune response through T-cell maturation into different effector phenotypes, characterised by cytokine profiles. It seems only a few mycobacteria are able to elicit the optimal immunomodulatory response
 - Up-regulation of T-helper 1 (Th1) pathway with enhanced production of IL-2 and Interferon-γ, which together with the innate effects is termed a 'Type I immune response'
 - Down-regulation of T-helper 2 (Th2) characterised by cytokines like IL-4, IL-5 and IL-13 (Type 2) IMM-101 does this, and increases the number of functional CD8+ cytotoxic T-cells.
4. Cancer cells also have multiple surface antigens and there is evidence that some may cross-react with those expressed by mycobacteria. However, cancer cells, by creating an inflammatory microenvironment, 'hide' from the immune system by obscuring these surface antigens. The immunosuppressive tumour microenvironment also subverts T-cell polarisation towards the undesirable Th2-biased profile, but IMM-101 can down-regulate this Th2 response.
5. Causing damage by chemical or physical means may bring further benefits by disrupting the tumour infrastructure so that antigens are more 'visible'. Specific synergies are postulated with drugs such as gemcitabine, paclitaxel (both of which inhibit myeloid derived suppressor cells) and cyclophosphamide, which has a similar effect on tolerogenic regulatory T-cells.
6. The emerging evidence is that CD8+ T cells and macrophages may be key effectors 'driven' by IMM-101 (as highlighted) but other cells and pathways may also be involved.

IMM-101-001: First in Human Study (Stage IIIb,c and Stage IV Melanoma Patients)

An intra-patient placebo-controlled, Phase I clinical study, to evaluate the safety and tolerability of intra-dermal IMM-101 (heat-killed Mycobacterium obuense) in adult melanoma cancer patients

- 18 patients - 3 stage IIIb, 3 stage IIIc and 12 stage IV
- 3 sequentially dosed cohorts, 2 week dose interval, total of 3 doses 0.1mg, 0.5mg or 1mg IMM-101
- Results published:
- Named patient programme initiated
- Long term follow-up trial (IMM-101-008) - safety and survival
Encouraging Survival in Stage IIIb,c/IV Melanoma

After 5 years of treatment with IMM-101 6/18 patients remain alive and on study with a further 2 known to be alive but no longer on study.

IMAGE 1

Immune Modulation And Gemcitabine Evaluation

IMM-101 Extends Survival and Maintains Quality of Life in IMAGE 1, a Randomised, Open-Label, Phase II Trial Comparing Gemcitabine with and without IMM-101 in Advanced Pancreatic Cancer

ORAL PRESENTATION AT ESMO WORLD CONGRESS ON GASTROINTESTINAL CANCER, 1 JULY 2015

Angus G. Dalgleish¹ and the IMAGE 1 Trial Investigators²

¹St George’s, University of London
²See Acknowledgements Slide
Background

Pancreatic Cancer - Goals of Patients and Caregivers

- Maintain quality of life (QoL)
- Extend survival
- Manage symptoms

IMM-101

- Suspension of heat-killed Mycobacterium obuense (NCTC 13365)
- Systemic immunomodulator administered by intradermal injection
- Induces CD8+ T cell responses, reduces metastatic burden in mouse models

IMAGE 1

- Clinically significant increases in OS and PFS
- Survival curve shape characteristic of immunotherapy
- No incremental toxicity or immune-related toxicities

Methods

- Phase II trial devised in 2010 when mainstay of treatment in EU and US was gemcitabine
- The purpose of this proof of concept Phase II study was to direct future development of IMM-101 in pancreatic cancer.
- Patients were randomly assigned in a 2:1 ratio to receive IMM-101 (0.1mL intradermal injection of 10mg/mL) + Gem (1000mg/m2) or Gem alone according to the schedule shown on the next slide.
- Per protocol this could be continued to a 12-cycle maximum.
Analysis Sets and Sub-groups (Patient Numbers)

<table>
<thead>
<tr>
<th>Set</th>
<th>All</th>
<th>Metastatic</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>110</td>
<td>92</td>
<td>All randomized patients</td>
</tr>
<tr>
<td>IMM-101 treated</td>
<td>75</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>35</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>82</td>
<td>Exclusions relative to ITT are:</td>
</tr>
<tr>
<td>IMM-101 treated</td>
<td>63</td>
<td>54</td>
<td>• 7 ineligible (4 prior surgical resections,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 elevated CRP, 1 steroid use)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 non-compliant due to receiving no Gem</td>
</tr>
<tr>
<td>Control</td>
<td>35</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>109</td>
<td>n/a</td>
<td>All randomized patients who received at least</td>
</tr>
<tr>
<td>IMM-101 treated</td>
<td>74</td>
<td>n/a</td>
<td>one dose of the study drug</td>
</tr>
<tr>
<td>Control</td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>IMM-101 treated</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Median (range)</td>
<td>68 (45-88)</td>
</tr>
<tr>
<td>Age < 65 %</td>
<td>%</td>
<td>33</td>
</tr>
<tr>
<td>Age ≥ 65 %</td>
<td>%</td>
<td>67</td>
</tr>
<tr>
<td>Gender</td>
<td>Male %</td>
<td>51</td>
</tr>
<tr>
<td>WHO performance status 0-1</td>
<td>%</td>
<td>83</td>
</tr>
<tr>
<td>WHO performance status 2</td>
<td>%</td>
<td>17</td>
</tr>
<tr>
<td>Time since diagnosis (months)</td>
<td>Median (range)</td>
<td>1.2 (0.1-0.9)</td>
</tr>
<tr>
<td>Completed study (12 cycles)</td>
<td>n (%)</td>
<td>12 (18)</td>
</tr>
</tbody>
</table>
Overall Survival and Progression Free Survival

<table>
<thead>
<tr>
<th></th>
<th>Median OS (months)</th>
<th>Median PFS (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ITT All</td>
<td>ITT Metastatic</td>
</tr>
<tr>
<td>IMM-101 Treated</td>
<td>6.7</td>
<td>7.0</td>
</tr>
<tr>
<td>Control</td>
<td>5.6</td>
<td>4.4</td>
</tr>
<tr>
<td>% increase</td>
<td>20%</td>
<td>59%</td>
</tr>
<tr>
<td>Log rank p value</td>
<td>0.072</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Overall Survival Kaplan- Meier Curves
ITT Population

Metastatic Sub-group
HR 0.54 (95% CI 0.33 - 0.87) p=0.009
HR 0.68 (95% CI 0.44 - 1.04) p=0.076
Overall Survival Kaplan-Meier Curves
PP Population

Survival Probability at 12, 18 and 24 months: ITT population

EMBARGOED UNTIL MAY 29, 2015
Times Corresponding to 25% Survival Probability

<table>
<thead>
<tr>
<th>Time Corresponding to 25% Survival Probability (months)</th>
<th>IMM-101 treated</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT All</td>
<td>10.5</td>
<td>7.9</td>
</tr>
<tr>
<td>ITT Metastatic</td>
<td>11.6</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Quality of Life
QLQ-C30 Global Health Status

<table>
<thead>
<tr>
<th>LS Means Change from Baseline</th>
<th>IMM-101 Treated</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks</td>
<td>weeks</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% Patients with Stable or Increased GHS from Baseline</th>
<th>IMM-101 Treated</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks</td>
<td>weeks</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Number of patients completing QLQ-C30 Global Health Status

EMBARGOED UNTIL MAY 29, 2015
Safety and Exposure Summary

<table>
<thead>
<tr>
<th></th>
<th>IMM-101 Treated (n=74)</th>
<th>Control (n=35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of AEs</td>
<td>1264</td>
<td>477</td>
</tr>
<tr>
<td>Mean time on study</td>
<td>5.52 months</td>
<td>3.80 months</td>
</tr>
<tr>
<td>AEs per month on study</td>
<td>3.05</td>
<td>3.59</td>
</tr>
<tr>
<td>Mean exposure to gemcitabine</td>
<td>118.7 days</td>
<td>90.5 days</td>
</tr>
<tr>
<td>AEs per month of gemcitabine</td>
<td>4.37</td>
<td>4.59</td>
</tr>
</tbody>
</table>

Safety - Grade 3 and Higher Adverse Events (≥ 5% incidence in either group, to 12 cycles)

<table>
<thead>
<tr>
<th>Adverse Event (preferred term)</th>
<th>IMM-101 treated n (%)</th>
<th>Control n (%)</th>
<th>Incidence Rate Difference (IMM-101 treated – Control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthenia</td>
<td>8 (11)</td>
<td>1 (3)</td>
<td>8%</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>6 (8)</td>
<td>1 (3)</td>
<td>5%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>4 (5)</td>
<td>0</td>
<td>5%</td>
</tr>
<tr>
<td>Anemia</td>
<td>6 (8)</td>
<td>1 (3)</td>
<td>5%</td>
</tr>
<tr>
<td>Biliary sepsis</td>
<td>4 (5)</td>
<td>0</td>
<td>5%</td>
</tr>
<tr>
<td>Bile duct obstruction</td>
<td>4 (5)</td>
<td>1 (3)</td>
<td>2%</td>
</tr>
<tr>
<td>Neutropenia and/or neutrophil count decreased</td>
<td>13 (18)</td>
<td>6 (17)</td>
<td>1%</td>
</tr>
<tr>
<td>Leukopenia and/or WBC count decreased</td>
<td>3 (4)</td>
<td>4 (11)</td>
<td>-7%</td>
</tr>
<tr>
<td>Hypokalemia and/or blood potassium decreased</td>
<td>0</td>
<td>2 (6)</td>
<td>-6%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>4 (5)</td>
<td>4 (11)</td>
<td>-6%</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>1 (1)</td>
<td>2 (6)</td>
<td>-5%</td>
</tr>
<tr>
<td>Disease Progression</td>
<td>3 (4)</td>
<td>3 (9)</td>
<td>-5%</td>
</tr>
<tr>
<td>Thrombocytopenia and/or platelet count decreased</td>
<td>5 (7)</td>
<td>3 (9)</td>
<td>-2%</td>
</tr>
<tr>
<td>ALT increased</td>
<td>3 (4)</td>
<td>2 (6)</td>
<td>-2%</td>
</tr>
</tbody>
</table>
Conclusions

- Clinically meaningful increases in OS in IMM-101 treated patients, notably in pre-defined sub-group of patients with metastatic disease (84% of total).
- Overall shape of IMM-101 Kaplan-Meier curves characteristic of immunotherapy agents (McDermott et al., 2014)
- Continued separation of the Kaplan-Meier curves to 24 months and survival probabilities at 12, 18 and 24 months are indicative of a durable response in some patients – chemotherapy curves tend to converge
- Quality of life maintained with indications of improvements in some scores.
- No additional burden of adverse events in IMM-101 treated patients above that relating to chemotherapy or the underlying disease and no pattern of immune-related toxicities.
- First positive study of an immunotherapy/chemotherapy combination given *first line* in PDAC
- Combination of IMM-101 with additional immunotherapies such as checkpoint inhibitors logical and also of interest.

Future Plans

- To continue development of IMM-101 in pancreatic cancer

 Immodulon priority

- To investigate IMM-101 in alternative cancer indications

 Proof of concept trials in other cancers, possibly investigator led

- To establish potential of novel and logical combinations

 CRUK/ECMC Combinations Alliance
IMM-101 Combinations Under Consideration

General concepts:
Immunotherapy combinations to potentiate overall effect
Combination with drugs reported to have beneficial immune effects
Chemotherapy or radiotherapy combinations

Specific ideas:
- Checkpoint blockade Anti-CTLA-4/PD1/PD-L1
 remove the brakes but apply some steering
- Low dose cyclophosphamide conditioning
 inhibit Tregs
- Other low dose cytotoxic chemotherapy or targeted radiotherapy
 damage tumour, release tumour-associated antigens
- Alternating chemotherapy with IMM-101 immunotherapy ‘backbone’